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Stating of the problem

Av(n) = Bv + f, (1)

where operators A,B are linear and continuous, acting from Banach space V to G, absolute term
f = f(t) models the external force.

A
o
η

(n)
= Bη + w, (2)

o
η

(m)
(0) = ξm, m = 0, 1, . . . , n− 1, (3)

A
o
η

(n)
= Bη + w + Cu, (4)

where η = η(t) is a stochastic process,
o
η is the Nelson – Gliklikh derivative of process η,

w = w(t) is a stochastic process that responds for external influence; u is unknown control
function from the Hilbert space U of controls, operator C ∈ L(U;G).

P

(
o
η

(m)
(0)− ξm

)
= 0, m = 0, ..., n− 1. (5)

(η̂, û), where η̂ is a solution to problem (4), (5), and the control û belongs to Uad ⊂ U, and
satisfies the relation

J(η̂, û) = min(η,u)J(η, u). (6)

Here J(η, u) is some specially constructed penalty functional and Uad is a closed convex set in
the Hilbert space U of controls.
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Introduction

dη = (Sη + ψ)dt+Adω, (7)
Lη̊ = Mη +Nω, (8)
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The spaces of "noises". Stochastic K-processes. Phase space

Let Ω ≡ (Ω,A,P) be the complete probability space. A measurable mapping ξ : Ω→ R is called
a random variable. Let A0 be a σ-subalgebra of σ-algebra A. Construct subspace L0

2 ⊂ L2 of
random variables measurable with respect to A0. Denote the orthoprojector by Π : L2 → L0

2. Let
ξ ∈ L2, then Πξ is called a conditional expectation of the random variable ξ, and is denoted by
E(ξ|A0).
Consider a set I ⊂ R and the following two mappings. f : I→ L2, associates to each t ∈ I the
random variable ξ ∈ L2. g : L2 × Ω→ R, associates to each pair (ξ, ω) the point ξ(ω) ∈ R. The
mapping η : R× Ω→ R having form η = η(t, ω) = g(f(t), ω) is called a stochastic process. The
stochastic process η = η(t, ·), where f and g are detined above, is a random variable for each
fixed t ∈ I, i.e. η(t, ·) ∈ L2, and η = η(·, ω) is called a (sample) path for each fixed ω ∈ Ω. The
stochastic process η is called continuous, if all its paths are almost sure continuous (i.e. for
almost all ω ∈ Ω the paths η(·, ω) are continuous). The set of continuous stochastic processes
forms a Banach space, which is denoted by C(I,L2). Fix η ∈ C(I,L2) and t ∈ I, and denote by
N ηt the σ-algebra generated by the random variable η(t). For brevity, Eηt = E(·|N ηt ).

Definition

Let η ∈ C(I,L2). A random process

o
η=

1

2

(
lim

∆t→0+
Eηt

(
η(t+ ∆t, ·)− η(t, ·)

∆t

)
+ lim

∆t→0+
Eηt

(
η(t, ·)− η(t−∆t, ·)

∆t

))

is called a Nelson–Gliklikh derivative
o
η of the stochastic process η at point t ∈ I, if the limits

exist in the sense of the uniform metric on R.
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The spaces Cl(I, L2) are called the spaces of differentiable “noises”. Let I = {0} ∪ R+, then a
well–known example of a vector in the space Cl(I, L2) is given by a stochastic process that
describes the Brownian motion in Einstein–Smoluchowski model

β(t) =
∞∑
k=0

ξk sin
π

2
(2k + 1)t,

where the independent random variables ξk ∈ L2 are such that the variances
Dξk = [π

2
(2k + 1)]−2, k ∈ {0} ∪ N.

o
β (t) =

β(t)

2t
, t ∈ R+.

Now let V be a real separable Hilbert space with orthonormal basis {ϕk}. Denote by VKL2 the
Hilbert space, which is a completion of the linear span of random variables

η =
∞∑
k=1

√
λkξkϕk, ‖η‖2V =

∞∑
k=1

λkDξk.

The sequence K = {λk} ⊂ R+ is such that
∞∑
k=1

λk < +∞, {ξk} ⊂ L2 is a sequence of random

variables. The elements of VKL2 will be called random K-variables.
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Mapping η : (ε, τ)→ VKL2 given by

η(t) =
∞∑
k=1

√
λkξk(t)ϕk,

where the sequence {ξk} ⊂ C(I, L2), is called a V-valued continuous stochastic K-process, if the
series on the right-hand side converges uniformly on any compact in I by norm ‖ · ‖V, and paths
of process η = η(t) are almost sure continuous. Continuous stochastic K-process η = η(t) is
called continuously Nelson–Gliklikh differentiable on I, if the series

o
η (t) =

∞∑
k=1

√
λk

o
ξk (t)ϕk

converges uniformly on any compact in I in the norm ‖ · ‖V, and paths of process
o
η=

o
η (t) are

almost sure continuous. A stochastic K-process, which is continuously differentiable up to any
order l ∈ N inclusively, is a Wiener K-process

WK(t) =

∞∑
k=1

√
λkβk(t)ϕk,

where {βk} ⊂ Cl(I, L2) is a sequence of Brownian motions on R+. Similarly, if G is a real
separable Hilbert space with orthonormal basis {ϕk}, the spaces C(I,GKL2) and
Cl(I,GKL2), l ∈ N, are constructed. Note also that spaces Cl(I, L2), C(I,VKL2) and
Cl(I,GKL2), l ∈ N, are called the spaces of differentiable K-“noises” .
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Stochastic Sobolev type equations of high order with relatively p-bounded
operators

A,B ∈ L(VKL2,GKL2). ρA(B) =
{
µ ∈ C : (µA−B)−1 ∈ L(GKL2,VKL2)

}
and

σA(B) = C \ ρA(B). (µA−B)−1, RAµ (B) = (µA−B)−1A, LAµ (B) = A(µA−B)−1 If the set
σA(B) is bounded (∃a > 0 : (|µ| < a)⇒ µ ∈ σA(B)) then the operator B is called
(A, σ)-bounded.
Let the operator B be (A, σ)-bounded, p ∈ {0} ∪ N.
σAn (B) = {µ ∈ C : µn ∈ σA(B)}; γ = {µ ∈ C : |µ| = r, rn > a}

P =
1

2πi

∫
γ

µn−1RAµn (B)dµ ∈ L(VKL2), Q =
1

2πi

∫
γ

µn−1LAµn (B)dµ ∈ L(GKL2).

Here, RAµn (B) = (µnA−B)−1A and LAµn (B) = A(µA−B)−1. Put
V0

KL2(V1
KL2) = kerP (im P ), G0

KL2(G1
KL2) = kerQ(im Q). Thus, the spaces VKL2 and

GKL2 since P and Q are projectors, can be decomposed into direct sums
VKL2=V0

KL2
⊕

V1
KL2 and GKL2=G0

KL2
⊕

G1
KL2, whereas V0

KL2 ⊃ kerA. By Ak(Bk)

define the restriction of operator A(B) onto VkKL2, k = 0, 1.

Lemma

The operators Ak, Bk ∈ L(VkKL2;GkKL2), k = 0, 1; moreover, there exist the operators
B−1

0 ∈ L(G0
KL2;V0

KL2) and A−1
1 ∈ L(G1

KL2;V1
KL2).

H = B−1
0 A0 ∈ L(V0

KL2), S = A−1
1 B1 ∈ L(V1

KL2).
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The (A, σ)-bounded operator B is called (A, p)-bounded, p ∈ {0} ∪ N, if ∞ is a removable
singular point (i.e. H ≡ O, p = 0) or the pole of order p ∈ N (i.e. Hp 6= O, Hp+1 ≡ O) of the
A-resolvent (µA−B)−1 of operator B.

A
o
η

(m)
(0) = Aξm, m = 0, ..., n− 1,

and has advantages over the Cauchy condition (3) in the case of Sobolev type equations

lim
t→0+

P

(
o
η

(m)
(t)− ξm

)
= 0, m = 0, ..., n− 1. (9)

The K-random process η ∈ Cn(I,GKL2) is called a classical solution of equation (2), if a.s. all
its trajectories satisfy equation (2) for some K-random process w ∈ C(I,GKL2). The solution
η = η(t) of (2) is called the classical solution of problem (2), (9) if a.s. condition (9) is also
fulfilled. The classical solutions of the problems (2), (5) and (2), (3) are defined analogously.
Consider firstly problem (3) for the homogeneous equation

A
o
η

(n)
= Bη. (10)

In this case (and only in this case) consider I = R.

Definition

The mapping V ∈ C∞(R;L(VKL2)) is called a propagator of equation (10), if for all v ∈ VKL2

the vector-function η(t) = V (t)v is a solution of (10).
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Theorem

Let the operator B be (A, σ)-bounded. Then, the operator-functions

Vm(t) =
1

2πi

∫
γ
µn−m−1(µnA−B)Aeµtdµ,

where m = 0, 1, . . . , n− 1 and the integral is understood in the sense of Riemann, define the
propagators of equation (10).

Lemma

V •m ∈ C∞(R;L(VKL2;V1
KL2)), (Vm(t))

(l)
t = Vm+l(t), where m = 0, 1, . . . , n− 1,

l = 0, 1, . . . ,m; (Vm(t))
(l)
t

∣∣∣
t=0

= O for m 6= l and (Vm(t))
(m)
t

∣∣∣
t=0

= P is the projector in

VKL2 on V1
KL2 along V0

KL2.

Definition

The set P ⊂ VKL2 is called the phase space of equation (10) if
(i) a.s. every trajectory of the solution η = η(t) lies in P pointwise, i.e. η(t) ∈ P a.s. for all t ∈ R;
(ii) for all random variables ξm ∈ L2(Ω;P), m = 0, 1, . . . , n− 1, there exists a unique solution
η ∈ CnKL2 of (3), (10).
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Theorem

Let the operator B be (A, p)-bounded, p ∈ {0} ∪N. Then the subspace V1
KL2 is the phase space

of equation (10).

Corollary

Under the conditions of Theorem the solution of (3), (10) is the Gaussian K-random process if
the random variables ξm, m = 0, 1, . . . , n− 1, are Gaussian.

Lemma

Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. Then for all independent random variables
ξm ∈ VKL2, m = 0, 1, . . . , n− 1, there exists a.s. a unique solution η ∈ C∞KL2 of (5), (10),

represented in the form η(t) =
n−1∑
m=0

V tmξm, t ∈ R. If in addition ξm, m = 0, 1, . . . , n− 1 take

values only in V1
KL2, then this solution is a unique solution of (3), (10).
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Let the K-random process w = w(t), t ∈ [0, τ) be such that

(I−Q)w ∈ Cn(p+1)(I,GKL2) and Qw ∈ C(I,GKL2), (11)

then the K-random process

η(t) = −
p∑
q=0

HqB−1
0 (I−Q)N

o
w

(qn)
(t) +

t∫
0

V t−sn−1A
−1
1 QNw(s)ds (12)

is a unique classical solution of (5), (2) with ξm ∈ V0
KL2, m = 0, ..., n− 1.

Theorem

Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. For any K-random process w = w(t)
satisfying (11), and for all independent random variables ξm ∈ VKL2, m = 0, 1, . . . , n− 1,
independent with w, there exists a.s. a unique solution η ∈ Cn(I,GKL2) of (2), (5), represented
in the form

η(t) =

n−1∑
m=0

V tmξm −
p∑
q=0

HqB−1
0 (I−Q)

o
w

(qn)
(t) +

t∫
0

V t−sn−1A
−1
1 Qw(s)ds. (13)
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Strong solutions

Definition

A vector function

η ∈ Hn(VKL2) = {η ∈ L2(I;VKL2) :
o
η

(n)
∈ L2(I;VKL2)}

is called a strong solution of equation (2), if it a.s. turns the equation to identity almost
everywhere on interval (0, τ). A strong solution η = η(t) of equation (2) is called a strong
solution to problem (2), (5) if condition (5) a.s. holds.

Hn(VKL2) ↪→ Cn−1(I;VKL2).

Hnp+n(GKL2) = {v ∈ L2(I;GKL2) :
o
v

(np+n)
∈ L2(I;GKL2), p ∈ {0} ∪ N}.

Let w ∈ Hnp+n(GKL2). Introduce the operators

A1w(t) = −
p∑
q=0

HqB−1
0 (I−Q)

o
w

(qn)
(t),

A2w(t) =
t∫
0

V t−sn−1A
−1
1 Qw(s)ds, t ∈ (0, τ)

and the function

k(t) =

n−1∑
m=0

V tmξm.
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Strong solutions

Lemma

Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. Then
(i) A1 ∈ L(Hnp+n(GKL2);Hn(VKL2));
(ii) for arbitrary ξm ∈ VKL2, m = 0, n− 1 the vector function k ∈ Cn([0, τ);VKL2);
(iii) A2 ∈ L(Hnp+n(GKL2);Hn(VKL2)).

A
o
η

(n)
= Bη + w, (2)

P

(
o
η

(m)
(0)− ξm

)
= 0, m = 0, ..., n− 1. (5)

Theorem

Let the operator B be (A, p)-bounded, p ∈ {0} ∪ N. For any K-random process w = w(t)
satisfying (11), and for all independent random variables ξm ∈ VKL2, m = 0, 1, . . . , n− 1,
independent with w, there exists a.s. a unique strong solution to problem (2), (5).
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Optimal control

o
H
np+n

(UKL2) = {u ∈ L2(0, τ ;UKL2) : u(np+n) ∈ L2(0, τ ;UKL2), u(q)(0) = 0 a.s., q = 0, p},

p ∈ {0} ∪ N. In the space
o
H
np+n

(UKL2) we single out a closed convex subset
o
H
np+n

∂ (UKL2),
which will be called the set of admissible controls.

Definition

A vector function û ∈
o
H
np+n

∂ (UKL2) is called an optimal control of solutions to problem (4),
(5), if relation (6) holds.

We need to prove the existence of a unique control û ∈
o
H
np+n

∂ (UKL2), minimizing the penalty
functional

J(η, u) = µ
n∑
q=0

∫ τ

0
||
o
η

(q)
−
o
η̃

(q)

||2GKL2
dt+ ν

np+n∑
q=0

∫ τ

0

〈
Nq

o
u

(q)
,
o
u

(q)
〉

UKL2

dt. (14)

Here µ, ν > 0, µ+ ν = 1, Nq ∈ L(UKL2), q = 0, 1, . . ., np+ n, are self-adjoint positively
defined operators, and η̃(t) is the target state of the system.

Theorem

Let the operator B be (A, p)-bounded, p ∈ {0} ∪N. Then for arbitrary w ∈ Hnp+n(GKL2) there
exists a unique optimal control to solutions of problem (4), (5).
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Multipoint initial-final value problems for dynamical Sobolev-type equations
in the space of noises

Introduce the following condition:

σL(M) =
m⋃
j=0

σLj (M), for m ∈ N; moreover , σLj (M) 6= ∅, there exist closed

contours γj ⊂ C, bounding corresponding domains Dj ⊃ σLj (M), such that

Dj ∩ σL0 (M) = ∅ and Dk ∩Dl = ∅ for all j, k, l = 1,m with k 6= l.

 (A1)

Consider the linear stochastic Sobolev-type equation

Lη̊ = Mη +Nω, (15)

where η = η(t) is the required stochastic K-process and ω = ω(t) is a known stochastic
K-process, and the operator N ∈ L(U;F).
Take τ0 = 0 and τj ∈ R+ with τj−1 < τj for j = 1,m. Complement (15) with the multipoint
initial-final conditions

lim
t→τ0+

P0(η (t)− ξ0) = 0, Pj(η(τj)− ξj) = 0, j = 1,m. (16)

ξj =
∞∑
k=1

√
λkξjkϕk, j = 0,m, (17)

where ξjk ∈ L2 is a Gaussian random variable such that series (17) is convergent. Call a
stochastic K-process η ∈ C1

KL2 a (classical) solution to (15) whenever a.s. all its trajectories
satisfy (15) for some stochastic K-process ω ∈ CKL2, some operator N ∈ L(U;F), and all
t ∈ I. Call a solution η = η(t) to (15) a (classical) solution to problem (15), (16) whenever in
addition condition (16) is satisfied.
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Multipoint initial-final value problems for dynamical Sobolev-type equations
in the space of noises
Theorem

For p ∈ {0} ∪N take an (L, p)-bounded operator M and assume that condition (A1) holds. Given
τj ∈ R+ for j = 1,m, an operator N ∈ L(U;F), a nuclear operator K ∈ L(U) with real spectrum
σ(K), a stochastic K-process ω = ω(t) such that (I−Q)Nω ∈ Cp+1

K L2 and QNω ∈ CKL2,
and random variables ξj ∈ L2, for j = 0,m, such that (17) are fulfilled, there exists a unique
solution η ∈ C1

KL2 to problem (15), (16); moreover, it is of the form

η(t) = −
p∑
q=0

HqM−1
0 (I−Q)ω̊(q)(t)

+
m∑
j=0

[
U
t−τj
j ξj +

∫ t

τj

U
t−τj−s
j L−1

1j QjNω(s)ds
]
, t ∈ I.

(18)

Corollary

If all the hypotheses of Theorem 16 hold and ω(t) = W̊K(t) then, given random variables ξj ∈ L2

as in (17), there exists a unique solution to problem (15), (16); furthermore, it has the form

η(t) =
m∑
j=0

[
U
t−τj
j ξj − SjPj

∫ t

τj

U
t−τj−s
j L−1

1j QjNWK(s)ds

+ L−1
1j QjNWK(t)

]
−

p∑
q=0

HqM−1
0 (I−Q)

◦
W

(q+1)
K (t), t ∈ R+.

(19)
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Linear Hoff equation with additive “white noise"

Consider a bounded domain D ⊂ Rd (d ∈ N) with boundary ∂D of class C∞. Denote
U = {u ∈W l+2

2 (D) : u(x) = 0, x ∈ ∂D} and F = W l
2(D), where l ∈ {0} ∪ N.

Fixing α, µ ∈ R, construct the operators L = µI + ∆ and M = αI, where ∆ is the Laplace
operator. Consider also the spectral problem

−∆u = νu in D and u(x) = 0 for x ∈ ∂D. (20)

Its solution is a family {νj} ⊂ R+ of eigenvalues enumerated in the nondecreasing order taking
their multiplicities into account and accumulating only to +∞, as well as the associated
orthonormal (in the sense of F) family of eigenfunctions {ϕj}.
For all µ ∈ R and α ∈ R \ {0} the operator M is (L, 0)-bounded; moreover, its L-spectrum is

σL(M) =
{
µk =

α

µ− νk
, k ∈ N \ {l : µ = νl}

}
∪ {0}. (21)

Furthermore, for m ∈ N construct the operator Λ = (−∆)m with

dom Λ = {u ∈W l+2m
2 (D) : ∆ku(x) = 0, x ∈ ∂D, k = 0,m− 1}.

The family of eigenfunctions of Λ coincides with the family {ϕj}, while its family of eigenvalues

is {νmj }. Since their asymptotics is νmj ∼ j
2m
d →∞ as j →∞, we can choose m ∈ N so that,

firstly, the dimension d of the domain D has some acceptable physical meaning, and secondly, the
series

∑∞
j=1(νmj )−1 converges.
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Linear Hoff equation with additive “white noise"

Then the Green operator of Λ is nuclear, and we take it as K. Therefore, consider the linear
stochastic Hoff equation in the form

Lη̊ = Mη + W̊K , (22)

where L and M are defined above, while N is the embedding operator I : U ↪→ F and
W̊K = W̊K(t) is the Nelson-Gliklikh derivative of the U-valued Wiener K-process WK = WK(t),
for t ∈ R+.
Take the projectors

P (Q) =

{
IU(IF) if µ 6= νj ∀j ∈ N;

IU −
∑
j:µ=νj

〈·, ϕj〉ϕj
(
IF −

∑
j:µ=νj

〈·, ψj〉ψj
)
,

Furthermore, choose h ∈ R+ with h < maxj∈N{|νj |} and construct the projectors

P1 = IU −
∑

h<|νj |
〈·, ϕj〉Uϕj , Q1 = IF −

∑
h<|νj |

〈·, ψj〉Fψj ;

P0 = P − P1, Q0 = Q−Q1.

(23)

Observe that in the construction of these projectors condition (A1) holds because
σL0 (M) = {µj ∈ σL(M) : |νj | ≤ h} and σL1 (M) = {µj ∈ σL(M) : |νj | > h}; hence,
σL0 (M) ∩ σL1 (M) = ∅.
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Linear Hoff equation with additive “white noise"

Choose τ1 ∈ R+ as well as random variables ξ0 and ξ1 independent of each other and of
stochastic K-processes η and pose the initial-final conditions

lim
t→0+

P0(η (t)− ξ0) = 0, P1(η(τ1)− ξ1) = 0, (24)

ξ0 =
∞∑
k=1

√
νkξ0kϕk, ξ1 =

∞∑
k=1

√
νkξ1kϕk. (25)

Theorem

If condition (A1) is satisfied then for all numbers µ ∈ R, α ∈ R \ {0} and τ1 ∈ R+, as well as
random variables ξ0k andξ1k such as Dξ0k ≤ C0 and Dξ1k ≤ C1 for some C0, C1 ∈ R+ there
exists a unique solution η = η(t), for t ∈ R+, to problem (22), (24); furthermore, it is of the form

η(t) = (L−1
10 Q0 + L−1

11 Q1)WK(t)− L−1
11 Q1WK(τ1)

− S0P0

∫ t

0
Ut−s0 L−1

10 Q0WK(s)ds+ Ut0ξ0 + Ut−τ11 ξ1

− S1P1

∫ t

τ1

Ut−τ1−s1 L−1
11 Q1WK(s)ds−M−1

0 (I−Q)N
◦

WK (t),

(26)

for t ∈ R+.
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Linear Hoff equation with additive “white noise"

Here
Ut0 =

∑
νj∈σL

0 (M)

etµj 〈·, ϕj〉Uϕj , Ut1 =
∑

νj∈σL
1 (M)

etµj 〈·, ϕj〉Uϕj ,

L−1
10 =

∑
νj∈σL

0 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

L−1
11 =

∑
νj∈σL

1 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

S10 = α
∑

νj∈σL
0 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

S11 = α
∑

νj∈σL
1 (M)

(µ− νj)−1〈·, ϕj〉Uϕj ,

M−1
0 = α−1

∑
νj=µ

〈·, ψj〉Fψj .

(27)
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Relatively radial operators and C0-semigroups in spaces of K-noises

Definition

The operator M is said to be p-radial with respect to an operator L(or (L, p)-radial), if it satisfies
the following two conditions:
(i) ∃ a ∈ R ∀ µ > a µ ∈ ρL(M);
(ii) ∃ K > 0 ∀ µk > a, k = 0, ..., p, ∀n ∈ N

max

{∥∥∥(RL(µ,p)(M)
)n∥∥∥

L(UKL2)
,
∥∥∥(LL(µ,p)(M)

)n∥∥∥
L(FKL2)

}
≤

K
p∏
k=0

(µk − a)n
.

Definition

A mapping V • ∈ C(R+;L(HKL2)) is called a semigroup in a Hilbert space HKL2, if

V sV t = V s+t ∀s, t ∈ R+.

Let us identify the semigroup with its graph {V t : t ∈ R+}. The semigroup {V t : t ∈ R+} will be
called a C0-semigroup (strongly continuous semigroup), if it is strongly continuous for t > 0 and
there exists lim

t→0+
V tv = v a.s. (i.e., for almost all ω ∈ Ω). The set

kerV • = {v ∈ HKL2 : a.s.V tv = 0 ∃t ∈ R+} will be called the kernel, and the set
imV • = {v ∈ HKL2 : a.s.v = V 0v} − the image of the semigroup {V t : t ∈ R+}.
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Relatively radial operators and C0-semigroups in spaces of K-noises

Theorem (14)

Let M be an (L, p)-radial operator. Then there exists a C0-semigroup of operators on the space
UKL2 (FKL2).

Ut = s− lim
k→∞

(
k(p+ 1)

t
RLk(p+1)

t

(M)

)k(p+1)

∈ L(UKL2) (28)

(
F t = s− lim

k→∞

(
k(p+ 1)

t
LLk(p+1)

t

(M)

)k(p+1)

∈ L(FKL2)

)
.

Denote kerU• = U0
KL2, kerF • = F0

KL2,
imU• = U1

KL2, imF • = U1
KL2, and by Lk(Mk) denote the restriction of the operator L(M)

to Uk
KL2 (domM

⋂
Uk

KL2) for k = 0, 1.

Lemma

Let M be an (L, p)-radial operator. Then the following assertions hold:
(i) L0 ∈ L(U0

KL2;F0
KL2 and M0 ∈ Cl(U0

KL2;F0
KL2);

(ii) There exists an operator M−1
0 ∈ L(F0

KL2;U0
KL2);

(iii) The operator H = M−1
0 L

(
G = LM−1

0

)
is nilpotent with degree ≤ p.
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Relatively radial operators and C0-semigroups in spaces of K-noises

Assume that there exists an operator

L−1
1 ∈ L(F1

KL2;U1
KL2) (29)

and that the spaces UKL2 and FKL2 split as follows:

UKL2 = U0
KL2 ⊕U1

KL2,FKL2 = F0
KL2 ⊕ F1

KL2. (30)

Remark

Conditions (29) and (30) are satisfied if the Hilbert spaces UKL2 andd FKL2 are reflexive or if
the operator M is strongly (L, p)-radial.

Lemma

Let M be an (L, p)-radial operator, and let conditions (29) and (30) be satisfied. Then
L1 ∈ L(U1

KL2;F1
KL2) and M0 ∈ Cl(U0

KL2;F0
KL2).

Any of the splittings (30) of a space is equivalent to the existence of the corresponding projector.
This projector has the form s− lim

t→0+
Ut.

Theorem

Let M be an (L, p)-radial operator. Then the operator S = L−1
1 M1

(
T = M1L

−1
1

)
is the

generator of the C0-semigroup U•1
(
F •1
)
that is the restriction of the semigroup U• (F •) to the

space U1
KL2

(
F1

KL2

)
.
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Relatively radial operators and C0-semigroups in spaces of K-noises

Consider the linear stochastic Sobolev type equation

L
◦
η= Mη. (31)

A stochastic K-process η ∈ C1(I;UKL2) will be called a ( solution of (31) if substituting it into
this equation a.s. results in an identity.

Definition

A set P ⊂ UKL2 will be called the phase space of (31) if its satisfied the following conditions:
(i) Each trajectory of the solution η = η(t) to (31) a.s. lies in P;
(ii) For a.a. η0 ∈ P there exists a solution of (31) with the condition η(0) = η0.

Theorem

Let M be an (L, p)-radial operator, and let conditions (29) and (30)be satisfied. Then the phase
space of (31) coincides with the image of the resolving semigroup of the form (28).
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Relatively radial operators and C0-semigroups in spaces of K-noises

Consider the inhomogeneous equation

L
o
η= Mη + ω, (32)

where the vector function ω belongs to the space C∞(I;FKL2), I = [0, t). Let M be an
(L, p)-radial operator, and let conditions (29) and (30) be satisfied. Then (32) can be considered
in the form of the system of two equations

Hη̇0 = η0 +M−1
0 (I−Q)ω0, (33)

η̇1 = Sη1 + L−1
1 Qω1.

Corollary

By Lemma 4, the operator H is nilpotent; therefore, the Cauchy problem η0(0) = η0
0 for (33) is

unsolvable for

η0
0 6= −

p∑
q=0

HpM−1
0

dqω0

dtq
(0).

Consequently, for the Cauchy problem η(0) = η0 for (32) to be uniquely solvable, it is necessary
to impose auxiliary conditions depending on the right-hand side of the equation on the vector η0.
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Relatively radial operators and C0-semigroups in spaces of K-noises

By the preceding, for the initial conditions we consider the Showalter–Sidorov conditions

lim
t→0+

(RLα(M))p+1(η(L)− η0) = 0. (34)

Let M be an (L, p)-radial operator, and let conditions (29), (30), be satisfied; then relation (34)
is equivalent to the condition

P (η(0)− η0) = 0.

Theorem

Let M be an (L, p)-radial operator, let conditions (29), (30) be satisfied, and let the inclusion
ω ∈ C∞(I;FKL2) hold, I = [0, T ). Then for each η0 ∈ UKL2 there exists a solution
η ∈ C1(I;UKL2) of the Showalter–Sidorov problem (34) for (32), and it has the form

η(t) = Utη0 −
p∑
q=0

HpM−1
0

dqω0

dtq
(t) +

t∫
0

Ut−sL−1
1 Qωds.

28 / 34 Alyona A. Zamyshlyaeva OPTIMAL CONTROL PROBLEM FOR STOCHASTIC HIGHER ORDER SOBOLEV TYPE EQUATION



Relatively radial operators in Hilbert spaces of differential k-forms with
stochastic coefficients

LetM be a smooth compact oriented Riemannian manifold without boundary with local
coordinates x1, x2, ..., xn. By Hk = Hk (M,Ω) denote the space of smooth differential k-forms
k = 0, 1, 2, ..., n with stochastic coefficients of the form

χi1,i2,...,ik
(t, x1, x2, ..., xn, ω) =

∑
|i1,i2,...,ik|=k

ai1,i2,...,ik
(t, xi1

, xi2
, ..., xik

, ω)dxi1
∧dxi2

∧...∧dxik
,

where ai1,i2,...,ik (t, xi1 , xi2 , ..., xik , ω) are coefficients depending, among other variables, on
time, and |i1, i2, ..., ik| is a multi-index.
One has the standard inner product

(ξ, ε)0 =

∫
M

ξ ∧ ∗ε, ξ, ε ∈ Hk. (35)

Here ∗ is the Hodge operator and ∧ is the operator of exterior multiplication of k-forms.
Completing the space Hk by continuity in the norm ‖ · |0 corresponding to the inner product (35)
we obtain the space H0

k. Introducing inner product in the spaces of differentiable or twice
differentiable (in the Nelson–Gliklikh sense) k-forms and completing the space in the norms
corresponding to these inner products, we construct the spaces H1

k and H2
k. For these Hilbert

spaces, one has continuous embeddings

H2
k ⊆ H1

k ⊆ H0
k.
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Relatively radial operators in Hilbert spaces of differential k-forms with
stochastic coefficients

In the spaces constructed, we can use a Laplace – Beltrami operator

∆u = dδ + δdu,

where d is the operator of exterior differentiation of differential forms and the operator δ = ∗d∗ is
the adjoint of the operator d.
The following generalization of the Hodge–Kodaira theorem holds for the resulting spaces.

Theorem

For the space Hlk, l = 0, 1, 2, one has the following decomposition into the direct sum of
subspaces:

Hlk = Hlkd ⊕ Hlkδ ⊕ Hlk∆, l = 0, 1, 2,

where Hkd is the space of potential forms, Hkδ is the space of solenoidal forms, and Hkd is the
space of harmonic forms.
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Relatively radial operators in Hilbert spaces of differential k-forms with
stochastic coefficients

Let K = {λk} be a sequence such that
∞∑
k=1

λ2
k < +∞. By {ϕk} and {ψk} denote the systems of

eigenvectors of the Laplace–Beltrami operator orthonormal with respect to the inner products in
H0
k and H2

k. These systems form bases in the spaces H0
k and H2

k. The elements of the spaces

H0
kKL2 and H2

kKL2 are vectors χ =
∞∑
k=1

λkξkϕk and κ =
∞∑
k=1

λkζkψk, the sequences of random

variables {ξk} ⊂ L2 and {ζk} ⊂ L2 are such that Dξk ≤ const and Dζk ≤ const. Construct the
set of continuous processes C(I;H0

kKL2) and the set of continuously Nelson – Gliklikh
differentiable processes C1(I;H0

kKL2).
Define operators L, M : H2

kKL2 → H0
kKL2 by the formulas

L = λ+ ∆, M = ν∆− id∆2 (36)

and reduce (32) to the equation

L
◦
χ= Mχ. (37)

Lemma

For any ν, λ, d ∈ R, the operator M is strongly (L, 0)-radial.

Theorem

(i) If λ /∈ {σk}, then the phase space of (37) coincides with the space H0
kKL2.

(ii) If λ ∈ {σk}, then the phase space of (37) is the space
P = {ε ∈ H0

kKL2 :< ε, ϕl >= 0, σl = λ}.
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Relatively radial operators in Hilbert spaces of differential k-forms with
stochastic coefficients

Consider the inhomogeneous stochastic Ginzburg – Landau equation

(λ+ ∆)χt = ν∆χ− id∆2χ+ θ (38)

in the space of differential forms with stochastic coefficients Hq0KL2 given on smooth compact
oriented Riemannian manifolds without boundary. Making the change of variables by formula (15)
and denoting the inhomogeneity by ω = Θ, we obtain an equation of the form (32) and can apply
abstract theorem to the problem with the Showalter–Sidorov condition

P (χ(0)− χ0) = 0. (39)
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Relatively radial operators in Hilbert spaces of differential k-forms with
stochastic coefficients

Theorem

For any ν, λ, d ∈ R any vector function ω ∈ C∞(I;FKL2), I = [0, t), and an arbitrary
χ0 ∈ UKL2 there exists a solution χ ∈ C1(I;UKL2) of the Showalter–Sidorov problem (39) for
(38), which has the form

χ(t) = Utχ0 −
p∑
q=0

(L−1
1 M1)pM−1

0

dqω0

dtq
(t) +

t∫
0

Ut−sωds,

where Ut =


+∞∑
k=1

eµkt < ·, ϕk > ϕk,∑
k:σk 6=λ

eµkt < ·, ϕk > ϕk,
and the operators are defined by the relations

L−1
1 =


+∞∑
k=1

(λ+ σk)−1 < ·, ϕk > ϕk,∑
k:σk 6=λ

(λ+ σk)−1 < ·, ϕk > ϕk,
M1 =


+∞∑
k=1

(νσk − idσ2
k) < ·, ϕk > ϕk,∑

k:σk 6=λ
(νσk − idσ2

k) < ·, ϕk > ϕk,

M−1
0 =

{ O, σk 6= λ, ∀k ∈ N,∑
k:σk 6=λ

(νσk − idσ2
k)−1 < ·, ϕk > ϕk.
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Thank you for your attention!
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