Introduction	The model		References and Funding
00	00000	000	00

On a coupled Price-Liquidity equity model with regime switching

Nadezhda P. Krasii ¹

¹DSTU, Rostov-on-Don, Russian Federation

Joint work with Manuel L. Esquível and Pedro P. Mota

International Conference New Trends of Stochastic Analysis - 2021, Divnomorskoe, June 1 to 5

Introduction 00	The model 00000	Existence and unicity	References and Funding
Outline			

2 The model

3 Existence and unicity

Introduction	The model	Existence and unicity	References and Funding
•0	00000	000	00

Introduction – i – Motivation

Example of co-variations between price and volume of traded shares of the asset

Introduction	The model	Existence and unicity	References and Funding
00			

Introduction - ii - Context

Goal, method, and an approach to quantitative liquidity

Coupling price-liquidity by the regime switching

Price and liquidity variable regime switching occurs at the stopping times corresponding to a change of region in the product state space of price and liquidity.

Quantitative proxies for liquidity

Bid-Ask spread or number of shares traded by unit of time.

Main goal of this work

Present a rigorous development of a coupled model for joint evolution **price-liquidity** using stochastic differential equations and regime switching.

References and Funding

The Model -i - Stochastic Differential Equations Equations for price S_t and liquidity L_t , thresholds, coupling by regime switching

Two SDE - for price S_t and for liquidity L_t

$$\begin{cases} dS_t = \mu(t, S_t, \theta) dt + \sigma(t, S_t, \theta) dW_t, \ S_0 \in \mathbb{R}^+ \\ dL_t = \nu(t, L_t, \lambda) dt + \eta(t, L_t, \lambda) dW_t, \ L_0 \in \mathbb{R}^+ \end{cases}$$

$$(W_t)_{t\geq 0}$$
 Brownian process, $oldsymbol{ heta}\in\{oldsymbol{ heta}^h,oldsymbol{ heta}^s,oldsymbol{ heta}^d\}$, $oldsymbol{\lambda}\in\{oldsymbol{\lambda}^h,oldsymbol{\lambda}^s,oldsymbol{\lambda}^d\}$,

Price drift regime switching – liquidity – thresholds L_m and L_M

$$\mu(t, S_t, \theta) = \begin{cases} \mu(t, S_t, \theta^h) & \text{if } L_t > L_M \\ \mu(t, S_t, \theta^s) & \text{if } L_m \le L_t \le L_M \\ \mu(t, S_t, \theta^d) & \text{if } L_t < L_m \end{cases}$$

similar relation for price volatility $\sigma(t, S_t, \theta)$

References and Funding

The Model – ii – Coupling and possible scenarios

Coupling main idea: price threshold hitting implies liquidity regime switching

Liquidity drift regime switching – price – thresholds S_m and S_M

$$u(t, L_t, \boldsymbol{\lambda}) = egin{cases}
u(t, L_t, \boldsymbol{\lambda}^h) & ext{if } S_t > S_M \\
u(t, L_t, \boldsymbol{\lambda}^s) & ext{if } S_m \leq S_t \leq S_M \\
u(t, L_t, \boldsymbol{\lambda}^d) & ext{if } S_t < S_m ,
\end{cases}$$

similar relation for liquidity **volatility** $\eta(t, S_t, \theta)$

Price and Liquidity co-influences scenarios

Scenarios				IV	V	VI	VII	VIII
Liquidity on highest price subdomain	1	\downarrow	\downarrow	\downarrow	↓	\downarrow	\downarrow	\downarrow
Liquidity on lowest price subdomain	↓	\downarrow	\downarrow	\downarrow	\downarrow	1	1	1
Price on highest liquidity subdomain	↓	\downarrow	\downarrow	1	1	\downarrow	\downarrow	1
Price on lowest liquidity subdomain	1	\downarrow	1	\downarrow	1	\downarrow	1	\downarrow

References and Funding

The Model – iii – Analysis of first scenario

Mutual behaviour and respective drift properties translation

Influence of price variations on liquidity variations and vice-versa

- **①** Price larger than highest threshold \Rightarrow liquidity goes up.
- **2** Price smaller than lowest threshold \Rightarrow liquidity goes down.
- **③** Liquidity larger than highest threshold \Rightarrow price goes down.
- Liquidity smaller than lowest threshold \Rightarrow price goes up.

Implementation of first scenario on price and liquidity drifts

•
$$\mu(t, S_t, \boldsymbol{\theta}^h) < 0$$
, $\mu(t, S_t, \boldsymbol{\theta}^d) > 0$

- $\mu(t, S_t, \theta^s) \ll \min\left(\left|\mu(t, S_t, \theta^h)\right|, \left|\mu(t, S_t, \theta^d)\right|\right)$
- $u(t, L_t, \boldsymbol{\lambda}^h) > 0, \ \nu(t, L_t, \boldsymbol{\lambda}^d) < 0$
- $\nu(t, L_t, \lambda^s) \ll \min\left(\left|\nu(t, L_t, \lambda^h)\right|, \left|\nu(t, L_t, \lambda^d)\right|\right)$

References and Funding

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Model – iv – A first scenario price-liquidity trajectory

Trajectory evolution according with price and liquidity drifts signs

Figure: Possible evolution of $(S_t, L_t)_{t \ge 0}$ on first scenario

References and Funding

The Model -v - A double threshold crossing

Main idea for the regime switching times: hitting times of inner boundary

Figure: $(S_t)_{t\geq 0}$ and $(L_t)_{t\geq 0}$ hitting time of inner boundary

Existence and unicity – i – The regime switching times

Defining the regime switching times and statement of an essential property

Regime switching times as hitting times of a inner boundary

- Thresholds S_m , S_M , L_m and L_M divide $[0, +\infty[\times[0, +\infty[$ in 9 subdomains.
- With $\{S_M \epsilon_S, S_M + \epsilon_S\}$, $\{L_M \epsilon_L, L_M + \epsilon_L\}$ etc, double thresholds, regime switching stopping times are **hitting times** on the **inner boundary** of the subdomain.

Crucial property: non accumulation points in compact intervals

 $0 \equiv \tau_0 < \tau_1 < \cdots < \tau_n < \cdots$ is increasing, $\lim_{n \to +\infty} \tau_n = +\infty$ a.s.

$$orall T\in \mathbb{R}_+ \ , \ \ \#\left\{k\geq 1: au_k(\omega)\leq T
ight\}<+\infty$$
 a.s. .

i.e., a.s. $(\tau_n(\omega))_{n\geq 0}$ don't have accumulation points in [0, T].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	The model	Existence and unicity	References and Funding
		000	

Existence and unicity – ii – strong solutions, unicity in law A theorem for SDE with possible irregular coefficients

Yamada-Watanabe Theorem (1971), SDE with $\alpha = \mu, \nu; \beta = \sigma, \eta$

 α and β progressively measurable; $\rho_1 : [0, +\infty[\mapsto [0, +\infty[, \text{increasing and continuous such that } \rho_1(0) = 0 \text{ and:}$

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{+\infty} \frac{du}{\rho_1(u)} = +\infty , \ (\beta(t, x, \theta) - \beta(t, y, \theta))^2 \le \rho_1(|x - y|) ;$$

$$\rho_2 : [0, +\infty[\mapsto [0, +\infty[, \text{ increasing and concave function, such that } \rho_2(0) = 0, \text{ and:}$$

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{+\infty} \frac{du}{\rho_2(u)} = +\infty , \ (\alpha(t, x, \theta) - \alpha(t, y, \theta)) \le \rho_2(|x - y|) .$$

Then, there is strong existence and uniqueness in law.

Introduction	The model	Existence and unicity	References and Funding
		000	

Existence and unicity – iii – of regime switching processes Induction using Yamada-Watanabe theorem and non accumulation stopping times

Main idea of a constructive approach to define the solution process

Apply Yamada-Watanabe to solve for $(X_t^1)_{t \in [0,\tau_1]}$, unique in law.

$$\begin{cases} dX_t^1 = \alpha(t, X_t^1, \boldsymbol{\theta}_i) dt + \beta(t, X_t^1, \boldsymbol{\theta}_i) dW_t , & t \in [0, \tau_1] , \\ X_0^1 = X_0 , \end{cases}$$

take regime switching at time τ_1 with new value of the parameter θ_j and solve for $(X_t^2)_{t\in[\tau_1,\tau_2[}$, unique in law,

$$\begin{cases} dX_t^2 = \alpha(t, X_t^2, \boldsymbol{\theta}_j) dt + \beta(t, X_t^2, \boldsymbol{\theta}_j) dW_t , & t \in [\tau_1, \tau_2] , \\ X_{\tau_1}^2 = X_{\tau_1}^1 , \end{cases}$$

so on and so forth. The solution is: $X_t = \sum_{n=1}^{+\infty} X_t^n \mathbb{I}_{[\tau_{n-1},\tau_n]}(t)$.

ヘロマ 人間マ ヘヨア ヘ

Introduction	The model	Existence and unicity	References and Funding
			••

Main Selected References

- Esquível, M.L. <u>Krasii, N.P.</u> Mota, P.P. **Auto and externally** induced regime switching diffusions. *Communications on Stochastic Analysis* 2020, 14, 27–47.
- Rianço, N.S. Esquível, M.L. Mota, P. Veiga, C. On a Price-Liquidity Threshold Regime Switching Model (preliminary report). Proceedings of the 6th St. Petersburg Workshop on Simulation, Ermakov, S.M.; Melas, V.B.; Pepelyshev, A.N., Eds. VVM com. Ltd 2009 Vol. 1 pp. 419–424.
- Esquível, M.L. Mota, P.P. On some auto-induced regime switching double-threshold glued diffusions. *J. Stat. Theory Pract.* 2014, 8, 760–771.
- Yamada, T.; Watanabe, S. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 1971, 11, 155–167.

