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Introduction – i – Motivation
Example of co-variations between price and volume of traded shares of the asset
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Introduction – ii – Context
Goal, method, and an approach to quantitative liquidity

Coupling price-liquidity by the regime switching

Price and liquidity variable regime switching occurs at the stopping
times corresponding to a change of region in the product state
space of price and liquidity.

Quantitative proxies for liquidity

Bid-Ask spread or number of shares traded by unit of time.

Main goal of this work

Present a rigorous development of a coupled model for joint
evolution price-liquidity using stochastic differential equations and
regime switching.
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The Model – i – Stochastic Differential Equations
Equations for price St and liquidity Lt , thresholds, coupling by regime switching

Two SDE - for price St and for liquidity Lt{
dSt = µ(t, St ,θ)dt + σ(t,St ,θ)dWt , S0 ∈ R+

dLt = ν(t, Lt ,λ)dt + η(t, Lt ,λ)dWt , L0 ∈ R+

(Wt)t≥0 Brownian process, θ ∈ {θh,θs ,θd}, λ ∈ {λh,λs ,λd},

Price drift regime switching – liquidity – thresholds Lm and LM

µ(t, St ,θ) =


µ(t,St ,θ

h) if Lt > LM

µ(t,St ,θ
s) if Lm ≤ Lt ≤ LM

µ(t,St ,θ
d) if Lt < Lm ,

similar relation for price volatility σ(t,St ,θ)
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The Model – ii – Coupling and possible scenarios
Coupling main idea: price threshold hitting implies liquidity regime switching

Liquidity drift regime switching – price – thresholds Sm and SM

ν(t, Lt ,λ) =


ν(t, Lt ,λ

h) if St > SM

ν(t, Lt ,λ
s) if Sm ≤ St ≤ SM

ν(t, Lt ,λ
d) if St < Sm ,

similar relation for liquidity volatility η(t, St ,θ)

Price and Liquidity co-influences scenarios

Scenarios I II III IV V VI VII VIII

Liquidity on highest price subdomain ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Liquidity on lowest price subdomain ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
Price on highest liquidity subdomain ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑
Price on lowest liquidity subdomain ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
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The Model – iii – Analysis of first scenario
Mutual behaviour and respective drift properties translation

Influence of price variations on liquidity variations and vice-versa

1 Price larger than highest threshold ⇒ liquidity goes up.

2 Price smaller than lowest threshold ⇒ liquidity goes down.

3 Liquidity larger than highest threshold ⇒ price goes down.

4 Liquidity smaller than lowest threshold ⇒ price goes up.

Implementation of first scenario on price and liquidity drifts

µ(t, St ,θ
h) < 0, µ(t, St ,θ

d) > 0

µ(t, St ,θ
s)� min

(∣∣µ(t,St ,θ
h)
∣∣ , ∣∣µ(t,St ,θ

d)
∣∣)

ν(t, Lt ,λ
h) > 0, ν(t, Lt ,λ

d) < 0

ν(t, Lt ,λ
s)� min

(∣∣ν(t, Lt ,λ
h)
∣∣ , ∣∣ν(t, Lt ,λ

d)
∣∣)



Introduction The model Existence and unicity References and Funding

The Model – iv – A first scenario price-liquidity trajectory
Trajectory evolution according with price and liquidity drifts signs

Figure: Possible evolution of (St , Lt)t≥0 on first scenario
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The Model – v – A double threshold crossing
Main idea for the regime switching times: hitting times of inner boundary

Figure: (St)t≥0 and (Lt)t≥0 hitting time of inner boundary
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Existence and unicity – i – The regime switching times
Defining the regime switching times and statement of an essential property

Regime switching times as hitting times of a inner boundary

Thresholds Sm, SM , Lm and LM divide [0,+∞[×[0,+∞[ in 9
subdomains.

With {SM − εS , SM + εS}, {LM − εL, LM + εL} etc, double
thresholds, regime switching stopping times are hitting times
on the inner boundary of the subdomain.

Crucial property: non accumulation points in compact intervals

0 ≡ τ0 < τ1 < · · · < τn < · · · is increasing, limn→+∞ τn = +∞ a.s.

∀T ∈ R+ , # {k ≥ 1 : τk(ω) ≤ T} < +∞ a.s. .

i.e., a.s. (τn(ω))n≥0 don’t have accumulation points in [0,T ].



Introduction The model Existence and unicity References and Funding

Existence and unicity – ii – strong solutions, unicity in law
A theorem for SDE with possible irregular coefficients

Yamada-Watanabe Theorem (1971), SDE with α = µ, ν; β = σ, η

α and β progressively measurable; ρ1 : [0,+∞[7→ [0,+∞[,
increasing and continuous such that ρ1(0) = 0 and:

lim
ε→0

∫ +∞

ε

du

ρ1(u)
= +∞ , (β(t, x ,θ)− β(t, y ,θ))2 ≤ ρ1(|x − y |) ;

ρ2 : [0,+∞[ 7→ [0,+∞[, increasing and concave function, such
that ρ2(0) = 0, and:

lim
ε→0

∫ +∞

ε

du

ρ2(u)
= +∞ , (α(t, x ,θ)− α(t, y ,θ)) ≤ ρ2(|x − y |) .

Then, there is strong existence and uniqueness in law.
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Existence and unicity – iii – of regime switching processes
Induction using Yamada-Watanabe theorem and non accumulation stopping times

Main idea of a constructive approach to define the solution process

Apply Yamada-Watanabe to solve for (X 1
t )t∈[0,τ1], unique in law.{

dX 1
t = α(t,X 1

t ,θi )dt + β(t,X 1
t ,θi )dWt , t ∈ [0, τ1] ,

X 1
0 = X0 ,

take regime switching at time τ1 with new value of the parameter
θj and solve for (X 2

t )t∈[τ1,τ2[, unique in law,{
dX 2

t = α(t,X 2
t ,θj)dt + β(t,X 2

t ,θj)dWt , t ∈ [τ1, τ2] ,

X 2
τ1 = X 1

τ1 ,

so on and so forth. The solution is: Xt =
∑+∞

n=1 X
n
t 1I[τn−1,τn[(t) .
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