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Introduction — i — Motivation

Example of co-variations between price and volume of traded shares of the asset
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Introduction — ii — Context

Goal, method, and an approach to quantitative liquidity

Coupling price-liquidity by the regime switching

Price and liquidity variable regime switching occurs at the stopping
times corresponding to a change of region in the product state
space of price and liquidity.

Quantitative proxies for liquidity

Bid-Ask spread or number of shares traded by unit of time.

Main goal of this work

Present a rigorous development of a coupled model for joint
evolution price-liquidity using stochastic differential equations and
regime switching.
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The Model — i — Stochastic Differential Equations

Equations for price S; and liquidity L, thresholds, coupling by regime switching

Two SDE - for price S; and for liquidity L;

{dSt = u(t, S¢,0)dt + o(t, S, 0)dW,, So € Rt

st = V(t, Lt, A)dt + T](t, Lt, A)th, Lo € R+

(Wt)>0 Brownian process, 6 € {Oh,OS,Bd}, A€ {)\h,)\s,)\d},

Price drift regime switching — liquidity — thresholds L., and Ly,

u(t,S:,0") i Ly > Ly
M(tv Staa) = ,LL(t, Staes) if Lm S Lt S LM
w(t,Se,09)  if Ly <Ly,

similar relation for price volatility o(t, St, 0)
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The Model — ii — Coupling and possible scenarios

Coupling main idea: price threshold hitting implies liquidity regime switching

Liquidity drift regime switching — price — thresholds S, and Sy,
v(t, L, A") if S; > Sy
I/(t, Lt, A) = I/(t, Lt, AS) if Sm S St S SM
v(t, L, A?)  if Sy < Sp,

similar relation for liquidity volatility 7(t, St, 0)

Price and Liquidity co-influences scenarios

[ Scenarios [T [N W[ V]V VI [Vil][Vi)]
[ Liquidity on highest pricesubdomain [ + T L [ L T L [ I [T L [ 1 [ ¢ |
| Liquidity on fowest pricesubdomain [ 1 | L [ L | &L [ L | t [ 1t [ T |
[ Price on highest liquidity subdomain [ I T J T I T + [ 2 T 1 [ 1 [ T |
| Price on lowest liquidity subdomain [+ [ J | *+ [ 4 [t [ & [ 1 | 1 |
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The Model — iii — Analysis of first scenario

Mutual behaviour and respective drift properties translation

Influence of price variations on liquidity variations and vice-versa

@ Price larger than highest threshold = liquidity goes up.
@ Price smaller than lowest threshold = liquidity goes down.
© Liquidity larger than highest threshold = price goes down.
@ Liquidity smaller than lowest threshold = price goes up.

Implementation of first scenario on price and liquidity drifts

o u(t,S:,0") <0, u(t,S:, 09 >0
o 1u(t, Se,0°) < min (|u(t, Se, 0", |u(t, Se, 07)|)
o v(t,Le,A") >0, v(t, L, A9) <0
o v(t,Ls, A°) < min (}u(t, Lt,)\h)| , }V(t, Lt,)\d)‘)

.




The model
000®0

The Model — iv — A first scenario price-liquidity trajectory

Trajectory evolution according with price and liquidity drifts signs
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Figure: Possible evolution of (S;, L;)¢>0 on first scenario
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The Model — v — A double threshold crossing

Main idea for the regime switching times: hitting times of inner boundary
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Figure: (S¢)¢>0 and (L¢)¢>o hitting time of inner boundary
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Existence and unicity — i — The regime switching times

Defining the regime switching times and statement of an essential property

Regime switching times as hitting times of a inner boundary
@ Thresholds S, Sy, Lm and Ly divide [0, +00[%[0, 400 in 9
subdomains.
o With {Sy —es,Sv +es}, {Lm — €1, Ly + €L} etc, double
thresholds, regime switching stopping times are hitting times
on the inner boundary of the subdomain.

Crucial property: non accumulation points in compact intervals

O=7mp < <---<7p<--- isincreasing, lim,_ o0 7h = +00 a.s.
VT eRy, #{k>1:m(w)<T}<+4oc0as..

i.e., a.s. (Th(w))n>0 don't have accumulation points in [0, T].
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Existence and unicity — ii — strong solutions, unicity in law

A theorem for SDE with possible irregular coefficients

Yamada-Watanabe Theorem (1971), SDE with ao = p,v; B = 0,7

« and [ progressively measurable; p; : [0, +-oco[— [0, +o0],
increasing and continuous such that p;(0) = 0 and:

””‘/m W oo, (B(t:x,0) — B(t,y,0))% < pr(lx — )
e—0 J, pl(u)_ ’ B 4 =1 yiy:

p2 1 [0, +o0[— [0, +o0], increasing and concave function, such
that p2(0) = 0, and:

+o0 u
tim [ s =400, (alt.x6) ~a(£,.6)) < palx— ).

Then, there is strong existence and uniqueness in law.
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Existence and unicity — iii — of regime switching processes

Induction using Yamada-Watanabe theorem and non accumulation stopping times

Main idea of a constructive approach to define the solution process

Apply Yamada-Watanabe to solve for (th)te[o,n]v unique in law.

dX! = a(t, XL, 0,)dt + B(t, XL, 0,))dW, , te[0, 7],
X=X,

take regime switching at time 71 with new value of the parameter
6; and solve for (XZ)¢epr mp[, unique in law,

{dXtZ = a(t, X2,0,)dt + B(t, X2,0;)dW; , t€ [r, 7],
X2 = XL

T )

so on and so forth. The solution is: X, = 1% X, (t) -

v
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