Investigation of a Stochastic Model of Nonlinear Filtration

K.V. Perevozchikova¹, N.A. Manakova¹, T.G. Sukacheva²

¹ Department of Mathematical Physics Equations, South Ural State University, Lenin ave 76, Chelyabinsk, Russian Federation

² Department of Algebra and Geometry, Yaroslav-the-Wise Novgorod State

University, st. Bolshaya St. Petersburg 41, Velikiy Novgorod, Russian Federation

Consider a complete probability space $\Omega \equiv (\Omega, \mathcal{A}, \mathbf{P})$ and the set of real numbers \mathbf{R} endowed with a Borel σ -algebra. According to [1], a measurable mapping $\xi : \Omega \to \mathbf{R}$ is called a *random* variable. The set of random variables having zero expectations (i.e. $\mathbf{E}\xi = 0$) and finite variances (i.e. $\mathbf{D}\xi < +\infty$) forms Hilbert space \mathbf{L}_2 with the scalar product $(\xi_1, \xi_2) = \mathbf{E}\xi_1\xi_2$, where \mathbf{E}, \mathbf{D} is the expectation and variance of the random variable, respectively.

Let $\mathcal{I} \subset \mathbf{R}$ be a set. Consider two mappings: $f : \mathcal{I} \to \mathbf{L}_2$, that each $t \in \mathcal{I}$, associates with a random variable $\xi \in \mathbf{L}_2$, and $g : \mathbf{L}_2 \times \Omega \to \mathbf{R}$, that each pair (ξ, ω) associates with a point $\xi(\omega) \in \mathbf{R}$. A mapping $\eta : \mathcal{I} \times \Omega \to \mathbf{R}$ of the form $\eta = \eta(t, \omega) = g(f(t), \omega)$ is called an *(onedimensional)* random process. According to [1], a random process η is called *continuous*, if almost surely all its trajectories are continuous. Denote by \mathbf{CL}_2 the set of continuous random processes, which forms a Banach space. Fix $\eta \in \mathbf{CL}_2$ and $t \in \mathcal{I}$ and denote by \mathcal{N}_t^{η} the σ -algebra generated by the random variable $\eta(t)$. Denote $\mathbf{E}_t^{\eta} = \mathbf{E}(\cdot|\mathcal{N}_t^{\eta})$.

Definition 1. (i) Suppose that $\eta \in \mathbf{CL}_2$. The derivative

$$\stackrel{o}{\eta} = D_S \eta = \frac{1}{2} \left(D + D_* \right) \eta = D \eta \left(t, \cdot \right) + D_* \eta \left(t, \cdot \right) =$$
$$= \lim_{\Delta t \to 0+} E_t^{\eta} \left(\frac{\eta \left(t + \Delta t, \cdot \right) - \eta \left(t, \cdot \right)}{\Delta t} \right) + \lim_{\Delta t \to 0+} E_t^{\eta} \left(\frac{\eta \left(t, \cdot \right) - \eta \left(t - \Delta t, \cdot \right)}{\Delta t} \right)$$

is called the symmetric mean derivative, where $D\eta(t, \cdot)$ is derivative on the right (on the left $D_*\eta(t, \cdot)$) of a random process η at the point $t \in (\varepsilon, \tau)$, if the limit exists in the sense of a uniform metric on **R**. A random process η is called mean differentiable on the right (on the left) on \mathcal{I} , if there exists the mean derivative on the right (on the left) at each point $t \in \mathcal{I}$.

Further, the symmetric mean derivative is called the *Nelson–Gliklikh derivative*. Denote the *l*-th Nelson–Gliklikh derivative of the random process η by $\overset{o(l)}{\eta}$, $l \in \mathbf{N}$. Note that the Nelson–Gliklikh derivative coincides with the classical derivative, if $\eta(t)$ is a deterministic function.

Consider the space of "noises" $\mathbf{C}^{l}\mathbf{L}_{2}$, $l \in \mathbf{N}$, i.e. the space of random processes from \mathbf{CL}_{2} , whose trajectories are almost surely differentiable by Nelson–Gliklikh on \mathcal{I} up to the order l inclusive.

Consider a real separable Hilbert space $(\mathbf{H}, < \cdot, \cdot >)$ identified with its conjugate space with orthonormal basis $\{\varphi_k\}$.Each element $u \in \mathbf{H}$ can be represented as $u = \sum_{k=1}^{\infty} < u, \varphi_k > \varphi_k$. Next, choose a monotonely decreasing numerical sequence $K = \{\mu_k\}$ such that $\sum_{k=1}^{\infty} \mu_k^2 < +\infty$. Consider a sequence of random variables $\{\xi_k\} \subset \mathbf{L}_2$, such that $\sum_{k=1}^{\infty} \mu_k^2 \mathbf{D}\xi_k < +\infty$. Denote by $\mathbf{H}_K \mathbf{L}_2$ the Hilbert space of random K-variables having the form $\xi = \sum_{k=1}^{\infty} \mu_k \xi_k \varphi_k$. Moreover, a random K-variable $\xi \in \mathbf{H}_K \mathbf{L}_2$ exists, if, for example, $\mathbf{D}\xi_k < \text{const } \forall k$. Note that space $\mathbf{H}_K \mathbf{L}_2$ is a Hilbert space with scalar product $(\xi^1, \xi^2) = \sum_{k=1}^{\infty} \mu_k^2 \mathbf{E}\xi_k^1 \xi_k^2$. Consider a sequence of random processes $\{\eta_k\} \subset \mathbf{CL}_2$ and define **H**-valued continuous stochastic K-process

$$\eta(t) = \sum_{k=1}^{\infty} \mu_k \eta_k(t) \varphi_k \tag{1}$$

if series (1) converges uniformly by the norm $\mathbf{H}_{K}\mathbf{L}_{2}$ on any compact set in \mathcal{I} . Consider the Nelson–Gliklikh derivatives of random K-process

$$\stackrel{o^{(l)}}{\eta}(t) = \sum_{k=1}^{\infty} \mu_k \stackrel{o^{(l)}}{\eta}_k(t)\varphi_k$$

on the assumption that there exist the Nelson–Gliklikh derivatives up to the order l inclusive in the right-hand side, and all series converge uniformly according to the norm $\mathbf{H}_{K}\mathbf{L}_{2}$ on any compact from \mathcal{I} . Next, consider the space $\mathbf{C}(\mathcal{I};\mathbf{H}_{K}\mathbf{L}_{2})$ of continuous stochastic K-processes and the space $\mathbf{C}^{l}(\mathcal{I};\mathbf{H}_{K}\mathbf{L}_{2})$ of stochastic K-processes whose trajectories are almost surely continuously differentiable by Nelson–Gliklikh up to the order $l \in \mathbf{N}$ inclusive.

Consider dual pairs of reflexive Banach spaces $(\mathcal{H}, \mathcal{H}^*)$ and $(\mathcal{B}, \mathcal{B}^*)$, such that embeddings

$$\mathcal{B} \hookrightarrow \mathcal{H} \hookrightarrow \mathbf{H} \hookrightarrow \mathcal{H}^* \hookrightarrow \mathcal{B}^* \tag{2}$$

are dense and continuous. Let an operator $L \in \mathcal{L}(\mathcal{H}; \mathcal{H}^*)$ be linear, continuous, self-adjoint, nonnegative defined Fredholm operator, and an operator $M \in C^k(\mathcal{B}; \mathcal{B}^*), k \geq 1$, be dissipative. In space **H** choose an orthonormal basis $\{\varphi_k\}$ so that $\operatorname{span}\{\varphi_1, \varphi_2, ..., \varphi_l\} = \ker L$, dim ker L = land the following condition holds: $\{\varphi_k\} \subset \mathcal{B}$.

Taking into account that the operator L is self-adjoint and Fredholm, we identify $\mathbf{H} \supset \ker L \equiv \operatorname{coker} L \subset \mathbf{H}^*$ and, similarly, construct the space $\mathbf{H}_K^* \mathbf{L}_2$ according to the corresponding orthonormal basis. We use the subspace $\ker L$ in order to construct the subspace $[\ker L]_K \mathbf{L}_2 \subset \mathbf{H}_K \mathbf{L}_2$ and, similarly, the subspace $[\operatorname{coker} L]_K \mathbf{L}_2 \subset \mathbf{H}_K^* \mathbf{L}_2$. Taking into account that embeddings (2) are continuous and dense, we construct the spaces $\mathcal{H}_K^* \mathbf{L}_2 = [\operatorname{coker} L]_K \mathbf{L}_2 \oplus [\operatorname{im} L]_K \mathbf{L}_2$ and $\mathcal{B}_K^* \mathbf{L}_2 = [\operatorname{coker} L]_K \mathbf{L}_2 \oplus [\operatorname{im} L]_K \mathbf{L}_2$.

We use the subspace $\operatorname{coim} L \subset \mathcal{H}$ in order to construct the subspace $[\operatorname{coim} L]_K \mathbf{L}_2$ such that the space $\mathcal{H}_K \mathbf{L}_2 = [\ker L]_K \mathbf{L}_2 \oplus [\operatorname{coim} L]_K \mathbf{L}_2$. Denote $[\ker L]_K \mathbf{L}_2 \equiv \mathcal{B}_K^0 \mathbf{L}_2$ such that the space $\operatorname{coim} L \cap \mathcal{B}$ in order to construct the set $\mathcal{B}_K^1 \mathbf{L}_2$, then $\mathcal{B}_K \mathbf{L}_2 = \mathcal{B}_K^0 \mathbf{L}_2 \oplus \mathcal{B}_K^1 \mathbf{L}_2$. The following lemma is correct, since the operator L is self-adjoint and Fredholm.

Lemma 1. [2] (i) Let operator $L \in \mathcal{L}(\mathcal{H}; \mathcal{H}^*)$ be a linear, continuous, self-adjoint, nonnegatively defined Fredholm operator, then the operator $L \in \mathcal{L}(\mathcal{H}_K \mathbf{L}_2; \mathcal{H}_K^* \mathbf{L}_2)$, and

$$\mathbf{H}_{K}\mathbf{L}_{2} \supset [\ker L]_{K}\mathbf{L}_{2} \equiv [\operatorname{coker} L]_{K}\mathbf{L}_{2} \subset \mathbf{H}_{K}^{*}\mathbf{L}_{2}$$

 $\mathbf{H} \supset \ker L \equiv \operatorname{coker} L \subset \mathbf{H}^*.$

(ii) There exists a projector Q of the space $\mathcal{B}_K^* \mathbf{L}_2$ on $[\overline{\mathrm{im} L}]_K \mathbf{L}_2$ along $[\operatorname{coker} L]_K \mathbf{L}_2$.

(iii) There exists a projector P of the space $\mathcal{B}_K \mathbf{L}_2$ on $\mathcal{B}_K^1 \mathbf{L}_2$ along $\mathcal{B}_K^0 \mathbf{L}_2$.

Suppose that $\mathcal{I} \equiv (0, +\infty)$. We use the space **H** in order to construct the spaces of K-"noises" spaces $\mathbf{C}^{k}(\mathcal{I}; \mathbf{H}_{K}\mathbf{L}_{2})$ and $\mathbf{C}^{k}(\mathcal{I}; \mathcal{B}_{K}\mathbf{L}_{2})$, $k \in \mathbf{N}$. Consider the stochastic Sobolev type equation

$$L \stackrel{o}{\eta} = M(\eta). \tag{3}$$

A solution to equation (3) is a stochastic K-process. Stochastic K-processes $\eta = \eta(t)$ and $\zeta = \zeta(t)$ are considered to be equal, if almost surely each trajectory of one of the processes coincides with a trajectory of other process.

Definition 2. A stochastic K-process $\eta \in C^1(\mathcal{I}; \mathcal{B}_K \mathbf{L}_2)$ is called a *solution to equation* (3), if almost surely all trajectories of η satisfy equation (3) for all $t \in \mathcal{I}$. A solution $\eta = \eta(t)$ to equation (3) that satisfies the initial value condition

$$\lim_{t \to 0+} (\eta(t) - \eta_0) = 0 \tag{4}$$

is called a *solution to Cauchy problem* (3), (4), if the solution satisfies condition (4) for some random K-variable $\eta_0 \in \mathcal{B}_K \mathbf{L}_2$.

Fix $\omega \in \Omega$. Let $\eta = \eta(t), t \in \mathcal{I}$ be a solution to equation (3), then η belongs to the set

$$\mathbf{M} = \begin{cases} \{\eta \in \mathcal{B}_K \mathbf{L}_2 : (\mathbf{I} - Q)M(\eta) = 0\}, & \text{if } \ker L \neq \{0\}; \\ \mathcal{B}_K \mathbf{L}_2, & \text{if } \ker L = \{0\}. \end{cases}$$
(5)

Theorem 1. [2] Suppose that the set **M** is a simple Banach C^k -manifold at the point $\eta_0 \in \mathbf{M}$. Then for any $\eta \in C^1(\mathcal{I}; \mathbf{M})$ exists a solution to Cauchy problem (3), (4).

Next, we consider the Dirichlet problem

$$\eta(s,t) = 0, \ (s,t) \in \partial\Omega \times \mathbf{R}_+ \tag{6}$$

for the stochastic Boussinesq equation

$$(\lambda - \Delta) \stackrel{o}{\eta} = \Delta(|\eta|^{p-2}\eta), \ p \ge 2.$$
(7)

Theorem 2. [2] Suppose that the set **M** is a simple Banach C^k -manifold at the point $\eta_0 \in \mathbf{M}$. Let $p \geq \frac{2n}{n+2}$, $\lambda \geq -\lambda_1$. Then for any $\eta \in C^1(\mathcal{I}; \mathbf{M})$ exists a solution of problem (4), (6), (7).

Acknowledgments. This work was funded by RFBR and Chelyabinsk Region, project number 20-41-000001.

- Sviridyuk G.A., Manakova N.A. Dynamic models of Sobolev type with the Showalter Sidorov Condition and Additive "Noises". Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 1, pp. 90–103. (in Russian)
- [2] Vasiuchkova K.V., Manakova N.A., Sviridyuk G.A. Degenerate Nonlinear Semigroups of Operators and Their Applications. Springer Proceedings in Mathematics and Statistics, 2020, vol. 325, pp. 363-378.

if