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Consider a complete probability space 2 = (2, A, P) and the set of real numbers R endowed
with a Borel o-algebra. According to [1], a measurable mapping & : Q@ — R is called a random
variable. The set of random variables having zero expectations (i.e. E{ = 0) and finite variances
(i.e. D¢ < +00) forms Hilbert space Lg with the scalar product (£1,&2) = E&1&2, where E, D is
the expectation and variance of the random variable, respectively.

Let Z C R be a set. Consider two mappings: f : Z — Lg, that each t € Z, associates with
a random variable £ € Lg, and ¢ : La x Q@ — R, that each pair (§,w) associates with a point
&(w) € R. A mapping 1 : Z x  — R of the form n = n(t,w) = g(f(t),w) is called an (one-
dimensional) random process. According to [1], a random process 7 is called continuous, if almost
surely all its trajectories are continuous. Denote by CL2 the set of continuous random processes,
which forms a Banach space. Fix n € CLg and ¢ € Z and denote by N’ the o-algebra generated
by the random variable 7(¢). Denote E/ = E(-|N}").

Definition 1. (i) Suppose that n € CLga. The derivative
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is called the symmetric mean derivative, where Dn(t,-) is derivative on the right (on the left
D,n(t,)) of a random process n at the point t € (e,7), if the limit exists in the sense of a
uniform metric on R. A random process 7 is called mean differentiable on the right (on the left)
on Z, if there exists the mean derivative on the right (on the left) at each point t € Z.

Futher, the symmetric mean derivative is called the Nelson—Gliklikh derivative. Denote the

!
[-th Nelson—Gliklikh derivative of the random process 1 by 7%( ), I € N. Note that the Nelson—
Gliklikh derivative coincides with the classical derivative, if n(t) is a deterministic function.
Consider the space of “noises” C'Lg, | € N, i.e. the space of random processes from CLs,
whose trajectories are almost surely differentiable by Nelson—Gliklikh on Z up to the order [
inclusive.



Consider a real separable Hilbert space (H, < -,- >) identified with its conjugate space with

o0
orthonormal basis {¢x}.Each element v € H can be represented as v = Y, < u, 05 > @g.
k=1

o0
Next, choose a monotonely decreasing numerical sequence K = {py} such that > ui < 4o00.
k=1

[e.e]
Consider a sequence of random variables {{x} C Lo, such that ) ,uszk < +00. Denote by
k=1

o
HxLy the Hilbert space of random K-variables having the form £ = > urérpr. Moreover, a

k=1
random K-variable £ € Hi Lo exists, if, for example, D, < const Vk. Note that space Hg Lo
[e.@]
is a Hilbert space with scalar product (£%,&2) = > M%Egéﬁz Consider a sequence of random

k=1
processes {1} C CLy and define H-valued continuous stochastic K-process

n(t) = murne(t)en (1)
P

if series (1) converges uniformly by the norm HgxLs on any compact set in Z. Consider the
Nelson—Gliklikh derivatives of random K-process
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on the assumption that there exist the Nelson—Gliklikh derivatives up to the order [ inclusive
in the right-hand side, and all series converge uniformly according to the norm HxLo on any
compact from Z. Next, consider the space C(Z;HgL2) of continuous stochastic K-processes
and the space CY(Z;HpLy) of stochastic K-processes whose trajectories are almost surely
continuously differentiable by Nelson—-Gliklikh up to the order I € N inclusive.

Consider dual pairs of reflexive Banach spaces (H,H*) and (B, B*), such that embeddings

B—sH—H<—H — B (2)

are dense and continuous. Let an operator L € L£(H;H*) be linear, continuous, self-adjoint, non-
negative defined Fredholm operator, and an operator M € C*(B;B*),k > 1, be dissipative. In
space H choose an orthonormal basis {¢} so that span{pi, v,..., ¢;} = ker L,dimker L = [
and the following condition holds: {¢;} C B.

Taking into account that the operator L is self-adjoint and Fredholm, we identify H D
ker I = coker L C H* and, similarly, construct the space H} Ls according to the corresponding
orthonormal basis. We use the subspace ker L in order to construct the subspace [ker L] gLy C
HxLs and, similarly, the subspace [coker L]gLa C HjL>. Taking into account that embeddings
(2) are continuous and dense, we construct the spaces Hj Lo = [coker L] gLy @ [im L] Lo and
B;{LQ = [coker L]KLQ D [H]KLQ

We use the subspace coim L C H in order to construct the subspace [coim L]xLg such that
the space HixLa = [ker L]k Lo @ [coim L] g La. Denote [ker L] xLa = B%Lg such that the space
coim LN B in order to construct the set B}{LQ, then B Lo = B%Lg @B}{Lg. The following lemma
is correct, since the operator L is self-adjoint and Fredholm.

Lemma 1. [2| (i) Let operator L € L(H;H*) be a linear, continuous, self-adjoint, non-
negatively defined Fredholm operator, then the operator L € L(H xLo; HjLo), and

HxLy D [ker L] Lo = [coker L] g Lo C Hy Lo



if
H D ker L = coker L C H".
(ii) There exists a projector @ of the space Bj-Lg on [im L] Lo along [coker L] Lo.
(iii) There exists a projector P of the space BxLa on Bk Ly along BY% Lo.
Suppose that Z = (0, +o0c). We use the space H in order to construct the spaces of K-“noises"
spaces CF(Z; HiLy) and CF(Z; BxLz), k € N. Consider the stochastic Sobolev type equation

Ln= M(n). (3)

A solution to equation (3) is a stochastic K-process. Stochastic K-processes n = n(t) and ¢ = ((t)
are considered to be equal, if almost surely each trajectory of one of the processes coincides with
a trajectory of other process.

Definition 2. A stochastic K-process € C1(Z; B Ls) is called a solution to equation (3),
if almost surely all trajectories of 7 satisfy equation (3) for all t € Z. A solution n = n(t) to
equation (3) that satisfies the initial value condition

Jim (n(t) —0) =0 (4)

is called a solution to Cauchy problem (3), (4), if the solution satisfies condition (4) for some
random K-variable 1y € BxLo.

Fix w € Q. Let n =n(t),t € Z be a solution to equation (3), then 1 belongs to the set

€ BxLy: (I—Q)M(n) =0}, if ker L # {0};
M:{{n ) ZBKLQ,)if(nkerL}_{O}. © (5)

Theorem 1. [2] Suppose that the set M is a simple Banach C*-manifold at the point 79 € M.
Then for any n € C'(Z; M) exists a solution to Cauchy problem (3), (4).

Next, we consider the Dirichlet problem
05, t) =0, (s,1) € 9 x Ry (6)

for the stochastic Boussinesq equation

(A= A) 1= A(n"2y), p > 2. (7)

Theorem 2. [2] Suppose that the set M is a simple Banach C*-manifold at the point 79 € M.

Let p > f—_f?, A > —\;. Then for any n € C1(Z; M) exists a solution of problem (4), (6), (7).
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