
Investigation of a Stochastic Model of Nonlinear
Filtration

K.V. Perevozchikova1, N.A. Manakova1, T.G. Sukacheva2

1 Department of Mathematical Physics Equations, South Ural State University,
Lenin ave 76, Chelyabinsk, Russian Federation
2 Department of Algebra and Geometry, Yaroslav-the-Wise Novgorod State
University, st. Bolshaya St. Petersburg 41, Velikiy Novgorod, Russian Federation

Consider a complete probability space Ω ≡ (Ω,A,P) and the set of real numbers R endowed
with a Borel σ-algebra. According to [1], a measurable mapping ξ : Ω → R is called a random
variable. The set of random variables having zero expectations (i.e. Eξ = 0) and finite variances
(i.e. Dξ < +∞) forms Hilbert space L2 with the scalar product (ξ1, ξ2) = Eξ1ξ2, where E, D is
the expectation and variance of the random variable, respectively.

Let I ⊂ R be a set. Consider two mappings: f : I → L2, that each t ∈ I, associates with
a random variable ξ ∈ L2, and g : L2 × Ω → R, that each pair (ξ, ω) associates with a point
ξ(ω) ∈ R. A mapping η : I × Ω → R of the form η = η(t, ω) = g(f(t), ω) is called an (one-
dimensional) random process. According to [1], a random process η is called continuous, if almost
surely all its trajectories are continuous. Denote by CL2 the set of continuous random processes,
which forms a Banach space. Fix η ∈ CL2 and t ∈ I and denote by N η

t the σ-algebra generated
by the random variable η(t). Denote Eη

t = E(·|N η
t ).

Definition 1. (i) Suppose that η ∈ CL2. The derivative

o
η= DSη =

1

2
(D +D∗) η = Dη (t, ·) +D∗η (t, ·) =

= lim
△t→0+

Eη
t

(
η (t+△t, ·)− η(t, ·)

△t

)
+ lim

△t→0+
Eη

t

(
η (t, ·)− η (t−△t, ·)

△t

)
is called the symmetric mean derivative, where Dη(t, ·) is derivative on the right (on the left
D∗η(t, ·)) of a random process η at the point t ∈ (ε, τ), if the limit exists in the sense of a
uniform metric on R. A random process η is called mean differentiable on the right (on the left)
on I, if there exists the mean derivative on the right (on the left) at each point t ∈ I.

Futher, the symmetric mean derivative is called the Nelson–Gliklikh derivative. Denote the

l-th Nelson–Gliklikh derivative of the random process η by
o
η
(l)
, l ∈ N. Note that the Nelson–

Gliklikh derivative coincides with the classical derivative, if η(t) is a deterministic function.
Consider the space of “noises” ClL2, l ∈ N, i.e. the space of random processes from CL2,

whose trajectories are almost surely differentiable by Nelson–Gliklikh on I up to the order l
inclusive.



Consider a real separable Hilbert space (H, < ·, · >) identified with its conjugate space with

orthonormal basis {φk}.Each element u ∈ H can be represented as u =
∞∑
k=1

< u,φk > φk.

Next, choose a monotonely decreasing numerical sequence K = {µk} such that
∞∑
k=1

µ2
k < +∞.

Consider a sequence of random variables {ξk} ⊂ L2, such that
∞∑
k=1

µ2
kDξk < +∞. Denote by

HKL2 the Hilbert space of random K-variables having the form ξ =
∞∑
k=1

µkξkφk. Moreover, a

random K-variable ξ ∈ HKL2 exists, if, for example, Dξk < const ∀k. Note that space HKL2

is a Hilbert space with scalar product (ξ1, ξ2) =
∞∑
k=1

µ2
kEξ1kξ

2
k. Consider a sequence of random

processes {ηk} ⊂ CL2 and define H-valued continuous stochastic K-process

η(t) =

∞∑
k=1

µkηk(t)φk (1)

if series (1) converges uniformly by the norm HKL2 on any compact set in I. Consider the
Nelson–Gliklikh derivatives of random K-process

o
η
(l)

(t) =
∞∑
k=1

µk

o
η
(l)

k (t)φk

on the assumption that there exist the Nelson–Gliklikh derivatives up to the order l inclusive
in the right-hand side, and all series converge uniformly according to the norm HKL2 on any
compact from I. Next, consider the space C(I;HKL2) of continuous stochastic K-processes
and the space Cl(I;HKL2) of stochastic K-processes whose trajectories are almost surely
continuously differentiable by Nelson–Gliklikh up to the order l ∈ N inclusive.

Consider dual pairs of reflexive Banach spaces (H,H∗) and (B,B∗), such that embeddings

B ↪→ H ↪→ H ↪→ H∗ ↪→ B∗ (2)

are dense and continuous. Let an operator L ∈ L(H;H∗) be linear, continuous, self-adjoint, non-
negative defined Fredholm operator, and an operator M ∈ Ck(B;B∗), k ≥ 1, be dissipative. In
space H choose an orthonormal basis {φk} so that span{φ1, φ2, ..., φl} = kerL,dimkerL = l
and the following condition holds: {φk} ⊂ B.

Taking into account that the operator L is self-adjoint and Fredholm, we identify H ⊃
kerL ≡ coker L ⊂ H∗ and, similarly, construct the space H∗

KL2 according to the corresponding
orthonormal basis. We use the subspace kerL in order to construct the subspace [kerL]KL2 ⊂
HKL2 and, similarly, the subspace [coker L]KL2 ⊂ H∗

KL2. Taking into account that embeddings
(2) are continuous and dense, we construct the spaces H∗

KL2 = [cokerL]KL2 ⊕ [im L]KL2 and
B∗
KL2 = [cokerL]KL2 ⊕ [im L]KL2.
We use the subspace coimL ⊂ H in order to construct the subspace [coimL]KL2 such that

the space HKL2 = [kerL]KL2 ⊕ [coimL]KL2. Denote [kerL]KL2 ≡ B0
KL2 such that the space

coimL∩B in order to construct the set B1
KL2, then BKL2 = B0

KL2⊕B1
KL2. The following lemma

is correct, since the operator L is self-adjoint and Fredholm.

Lemma 1. [2] (i) Let operator L ∈ L(H;H∗) be a linear, continuous, self-adjoint, non-
negatively defined Fredholm operator, then the operator L ∈ L(HKL2;H∗

KL2), and

HKL2 ⊃ [kerL]KL2 ≡ [coker L]KL2 ⊂ H∗
KL2



if
H ⊃ kerL ≡ coker L ⊂ H∗.

(ii) There exists a projector Q of the space B∗
KL2 on [im L]KL2 along [coker L]KL2.

(iii) There exists a projector P of the space BKL2 on B1
KL2 along B0

KL2.
Suppose that I ≡ (0,+∞). We use the space H in order to construct the spaces of K-“noises"

spaces Ck(I;HKL2) and Ck(I;BKL2), k ∈ N. Consider the stochastic Sobolev type equation

L
o
η= M(η). (3)

A solution to equation (3) is a stochastic K-process. Stochastic K-processes η = η(t) and ζ = ζ(t)
are considered to be equal, if almost surely each trajectory of one of the processes coincides with
a trajectory of other process.

Definition 2. A stochastic K-process η ∈ C1(I;BKL2) is called a solution to equation (3),
if almost surely all trajectories of η satisfy equation (3) for all t ∈ I. A solution η = η(t) to
equation (3) that satisfies the initial value condition

lim
t→0+

(η(t)− η0) = 0 (4)

is called a solution to Cauchy problem (3), (4), if the solution satisfies condition (4) for some
random K-variable η0 ∈ BKL2.

Fix ω ∈ Ω. Let η = η(t), t ∈ I be a solution to equation (3), then η belongs to the set

M =

{
{η ∈ BKL2 : (I−Q)M(η) = 0}, if kerL ̸= {0};

BKL2, if kerL = {0}. (5)

Theorem 1. [2] Suppose that the set M is a simple Banach Ck-manifold at the point η0 ∈ M.
Then for any η ∈ C1(I;M) exists a solution to Cauchy problem (3), (4).

Next, we consider the Dirichlet problem

η(s, t) = 0, (s, t) ∈ ∂Ω×R+ (6)

for the stochastic Boussinesq equation

(λ−∆)
o
η= ∆(|η|p−2η), p ≥ 2. (7)

Theorem 2. [2] Suppose that the set M is a simple Banach Ck-manifold at the point η0 ∈ M.
Let p ≥ 2n

n+2 , λ ≥ −λ1. Then for any η ∈ C1(I;M) exists a solution of problem (4), (6), (7).
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