Martingales with respect to special filtrations

Alexander A. Gushchin^{a,b}

^aSteklov Mathematical Institute, Moscow, Russian Federation ^bNational Research University Higher School of Economics, Moscow, Russian Federation

The following simple model has been studied and intensively used in applications. Let Γ be a random time, i.e. a random variable with positive values on a probability space $(\Omega, \mathscr{F}, \mathsf{P})$. Consider the smallest filtration with respect to which Γ is a stopping time (or, equivalently, the process $\mathbb{1}_{\{t \ge \Gamma\}}$ is adapted). Dellacherie [1] was the first who considered this model (in fact, with $\Omega = \mathbb{R}_+$ and $\Gamma(\omega) = \omega$; however, this specification is not important) to construct some counterexamples from the general theory of stochastic processes. His formula for the compensator of the process $\mathbb{1}_{\{t \ge \Gamma\}}$ is used for calculating compensators of marked point processes and in models of default risk.

Our aim is to study a more general new model introduced in [2]. Let Γ be a random variable with values in \mathbb{R}_+ on a probability space $(\Omega, \mathscr{F}, \mathsf{P})$. We tacitly assume that $\mathsf{P}(\Gamma > 0) > 0$. $G(t) = \mathsf{P}(\Gamma \leq t), t \in \mathbb{R}_+$, stands for the distribution function of Γ and $\overline{G}(t) = 1 - G(t)$. Put also $t_G = \sup \{t \in \mathbb{R}_+ : G(t) < 1\}$ and $\mathfrak{T} = \{t \in \mathbb{R}_+ : \mathsf{P}(\Gamma \geq t) > 0\}$. Note that $\mathsf{P}(\Gamma \notin \mathfrak{T}) = 0$. We often distinguish between the following two cases:

Case A $\mathsf{P}(\Gamma = t_G < \infty) = 0.$

Case B $\mathsf{P}(\Gamma = t_G < \infty) > 0.$

It is clear that $\mathfrak{T} = [0, t_G)$ in Case A and $\mathfrak{T} = [0, t_G]$ in Case B.

According to [2], we define $\mathscr{F}_t, t \in \mathbb{R}_+$, as the collection of subsets A of Ω such that $A \in \mathscr{F}$ and $A \cap \{t < \Gamma\}$ is either \varnothing or coincides with $\{t < \Gamma\}$. It is easy to check that \mathscr{F}_t is a σ -field for every $t \in \mathbb{R}_+$. A random variable X is \mathscr{F}_t -measurable if and only if it is constant on $\{t < \Gamma\}$. Now it is trivial to check that $\mathbb{F} = (\mathscr{F}_t)_{t \in \mathbb{R}_+}$ is a filtration, i.e. an increasing right-continuous family. We call this filtration a *single jump filtration*. It is determined by generating elements Γ and \mathscr{F} . We will also write $\mathbb{F}(\Gamma, \mathscr{F})$ to distinguish it among other filtrations. The case where $\mathscr{F} = \sigma\{\Gamma\}$, i.e. \mathscr{F} is the smallest σ -field with respect to which Γ is measurable will be referred to as the Dellacherie model.

Example 1. Let Γ be as above, L integrable random variable. Since $\{\Gamma > t\}$ is an atom of \mathscr{F}_t and the traces of \mathscr{F} and \mathscr{F}_t on $\{\Gamma \leq t\}$ coincide, then

$$\mathsf{E}(L|\mathscr{F}_t) = F(t)\mathbb{1}_{\{t < \Gamma\}} + L\mathbb{1}_{\{t \ge \Gamma\}}, \quad t < t_G, \quad where \quad F(t) = \overline{G}(t)^{-1} \int_{\{\Gamma > t\}} L \, d\mathsf{P}.$$

Every uniformly integrable martingale has this form. Note that F(t), $t < t_G$, is a deterministic right-continuous function which is absolutely continuous with respect to dG(t) on [0,t] for every $t < t_G$. In particular, it has a finite variation over [0,t] for $t < t_G$, and over $[0,t_G)$ in Case B.

Email address: gushchin@mi-ras.ru (Alexander A. Gushchin)

Example 2. Let Γ be as above and correspond to Case A. Define

$$M_t = \overline{G}(t)^{-1} \mathbb{1}_{\{t < \Gamma\}}.$$
(1)

Then $M = (M_t)_{t \in \mathbb{R}_+}$ is a local martingale. Moreover, it is a martingale only if $t_G = \infty$, and it is a supermartingale if $t_G < \infty$. This process (if $t_G = \infty$) often appears in the modelling of credit risk.

Example 3. Let $B = (B_t)_{t \in \mathbb{R}_+}$ be a standard Brownian motion defined on some stochastic basis $(\Omega, \mathscr{G}, (\mathscr{G}_t)_{t \in \mathbb{R}_+}, \mathsf{P})$ and σ an a.s. finite stopping time on this basis. Define

 $\tau_t = \inf\{s \in \mathbb{R}_+ : B_s > t\} \quad and \quad X_t = B_{\sigma \wedge \tau_t}, \quad t \ge 0.$

The process $X = (X_t)_{t \in \mathbb{R}_+}$ can be written as

$$X_t = t \mathbb{1}_{\{t < \Gamma\}} + B_\sigma \mathbb{1}_{\{t \ge \Gamma\}}, \quad where \quad \Gamma = \sup_{s \leqslant \sigma} B_s.$$

Define a single jump filtration $\mathbb{F}(\Gamma, \mathscr{G}) = (\mathscr{F}_t)_{t \in \mathbb{R}_+}$ generated by Γ . In general, X is a submartingale with respect to $(\mathscr{G}_{\tau_t})_{t \in \mathbb{R}_+}$ and $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$, see [3], and may not be a martingale, take, e.g., $\sigma = \tau_1$.

Let us mention briefly what is known about considered models with single jump filtrations. A simple characterisation of local martingales is suggested in [2]. As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour. It is shown that there may be σ -martingales that are not local martingales [2] and there may be local martingales that are not local martingales with respect to the filtration that they generate [4]. Both possibilities are absent in the Dellacherie model, A full description of all σ -martingales is given [2] and it is shown that every σ -martingale remains to be a σ -martingale with respect to the filtration that it generates [4].

Here we consider a single jump filtration $\mathbb{F} = (\mathscr{F}_t)_{t \in \mathbb{R}_+}$ generated by a random time Γ and a σ -field \mathscr{F} and characterize semimartingales with respect to it. Processes with finite variation are not assumed to be adapted and to start from 0. For a process $X = (X_t)_{t \in \mathbb{R}_+}$, X^{Γ} stands for the stopped process $(X_{t \wedge \Gamma})_{t \in \mathbb{R}_+}$.

Theorem 1. (i) Every semimartingale is a process with finite variation.

(ii) If X is a semimartingale, the stopped process X^{Γ} has a representation

$$X_t^{\Gamma} = F(t)\mathbb{1}_{\{t < \Gamma\}} + L\mathbb{1}_{\{t \ge \Gamma\}}, \quad t \in \mathbb{R}_+,$$

$$\tag{2}$$

where $F: \mathbb{R}_+ \to \mathbb{R}$ is a deterministic right-continuous function and L is a random variable. Moreover, F has a finite variation over [0,t] for $t < t_G$, and over $[0,t_G)$ in Case B. Any process that satisfies (2) with F as described above, is a semimartingale.

(iii) If a process with finite variation vanishes on the stochastic interval [0, Gamma], then it is a predictable semimartingale.

(iv) Let X be a semimartingale. The following statements are equivalent:

- (a) X is a special semimartingale.
- (b) $\mathsf{E}(|X_{\Gamma}|\mathbb{1}_{\{\Gamma \leq t\}}) < \infty$ for all $t \in \mathfrak{T}$.
- (c) $\mathsf{E}(|\Delta X_{\Gamma}|\mathbb{1}_{\{\Gamma \leq t\}}) < \infty$ for all $t \in \mathfrak{T}$.

Remark 1. Statement (i) is known for a class of so-called jumping filtrations, see [5]. A single jump filtration is a special case of a jumping filtration.

Remark 2. A formula for the canonical decomposition of a special semimartingale is a simple consequence of Theorem 1 and Theorem 5 in [2].

Given a process $X = (X_t)_{t \ge 0}$, its running maximum process is denoted by $\overline{X} = (\overline{X}_t)_{t \ge 0}$:

$$\overline{X}_t := \sup_{s \leqslant t} X_s.$$

A process X is called max-continuous if the process \overline{X} is continuous.

A max-continuous local martingale $X, X_0 = 0$, is called a local max-level martingale [3] if $\mathsf{E}(X_{C_t}) \equiv 0$, where $C_s := \inf\{t: \overline{X}_t > s\}$. A local max-level martingale is not necessary a martingale. Indeed, assume that Γ has a distribution with finite support and without atoms and define M by (1), then $M_t - M_0$ is a local max-level martingale but not a martingale.

Theorem 2. A necessary and sufficient condition that a random vector (W, V) with values in $[0, +\infty] \times [0, +\infty)$ have the same joint law as the vector $(\overline{X}_{\infty}, \overline{X}_{\infty} - X_{\infty})$ for some local max-level martingale X is that $\{W = 0\} \cup \{W = \infty\} \subseteq \{V = 0\}$ and

$$\mathsf{E}(W \wedge t) = \mathsf{E}(V\mathbb{1}_{\{W \leqslant t\}}), \quad t \ge 0.$$
(3)

If the vector (W, V) satisfies this condition, then one can take as X a stopped Brownian motion as in Example 3 which is a continuous martingale, or

$$X_t = W \wedge t - V \mathbb{1}_{\{W \le t\}}, \quad t \ge 0,$$

which is a martingale with respect to a single jump filtration generated by W, or

$$X_t = Q(t \wedge \Gamma) - V \mathbb{1}_{\{\Gamma \le t\}}, \quad t \ge 0,$$

where $Q(t) := \inf\{s: \mathsf{P}(W \leq s) > t\}$ is the upper quantile function of W, Γ has a uniform distribution on (0,1) and $\operatorname{Law}(Q(\Gamma), V) = \operatorname{Law}(W, V)$. In the latter case X is a local martingale with respect to a single jump filtration generated by Γ .

Remark 3. Let X be a local max-level martingale. Then X_t converges a.s. on the set $\{\overline{X}_{\infty} < \infty\}$ to a limit denoted by X_{∞} . We set $\overline{X}_{\infty} - X_{\infty} = 0$ on the set $\{\overline{X}_{\infty} = \infty\}$.

Remark 4. The quantile function Q(t) is continuous if W satisfies (3), see [3].

A non-trivial part of Theorem 2 is that under (3) there is a stopped Brownian motion $X = B^{\sigma}$ with $\text{Law}(\overline{X}_{\infty}, \overline{X}_{\infty} - X_{\infty}) = (\overline{B}_{\sigma}, \overline{B}_{\sigma} - B_{\sigma}) = \text{Law}(W, V)$, see [3].

The paper was prepared within the framework of the HSE University Basic Research Program.

References

- C. Dellacherie, Un exemple de la théorie générale des processus, in: Séminaire de Probabilités, IV, volume 124 of *Lecture Notes in Math.*, Springer, 1970, pp. 60–70.
- [2] A. A. Gushchin, Single jump filtrations and local martingales, Mod. Stoch.: Theory Appl. 7 (2020) 135–156.
- [3] A. A. Gushchin, The joint law of a max-continuous local submartingale and its maximum, Theory Probab. Appl. 65 (2021) 545–557.
- [4] A. A. Gushchin, A. K. Zhunussova, Single jump filtrations : Preservation of the local martingale property with respect to the filtration generated by the local martingale, in: Karapetyants A., Pavlov I. V., Shiryaev A. N. (eds) Operator Theory and Harmonic Analysis. Vol. 2: Probability-Analytical Models, Methods and Applications, Springer Proceedings in Mathematics & Statistics, Springer, Cham, 2021.
- [5] J. Jacod, A. V. Skorohod, Jumping filtrations and martingales with finite variation, in: Séminaire de Probabilités, XXVIII, volume 1583 of *Lecture Notes in Math.*, Springer, Berlin, 1994, pp. 21–35.