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The following simple model has been studied and intensively used in applications. Let Γ be a
random time, i.e. a random variable with positive values on a probability space (Ω,F ,P). Consider
the smallest filtration with respect to which Γ is a stopping time (or, equivalently, the process 1{t>Γ}
is adapted). Dellacherie [1] was the first who considered this model (in fact, with Ω = R+ and
Γ(ω) = ω; however, this specification is not important) to construct some counterexamples from
the general theory of stochastic processes. His formula for the compensator of the process 1{t>Γ}
is used for calculating compensators of marked point processes and in models of default risk.

Our aim is to study a more general new model introduced in [2]. Let Γ be a random variable
with values in R+ on a probability space (Ω,F ,P). We tacitly assume that P(Γ > 0) > 0.
G(t) = P(Γ 6 t), t ∈ R+, stands for the distribution function of Γ and G(t) = 1 −G(t). Put also
tG = sup {t ∈ R+:G(t) < 1} and T = {t ∈ R+:P(Γ > t) > 0}. Note that P(Γ /∈ T) = 0. We often
distinguish between the following two cases:

Case A P(Γ = tG <∞) = 0.

Case B P(Γ = tG <∞) > 0.

It is clear that T = [0, tG) in Case A and T = [0, tG] in Case B.
According to [2], we define Ft, t ∈ R+, as the collection of subsets A of Ω such that A ∈ F and

A ∩ {t < Γ} is either ∅ or coincides with {t < Γ}. It is easy to check that Ft is a σ-field for every
t ∈ R+. A random variable X is Ft-measurable if and only if it is constant on {t < Γ}. Now it
is trivial to check that F = (Ft)t∈R+ is a filtration, i.e. an increasing right-continuous family. We
call this filtration a single jump filtration. It is determined by generating elements Γ and F . We
will also write F(Γ,F ) to distinguish it among other filtrations. The case where F = σ{Γ}, i.e. F
is the smallest σ-field with respect to which Γ is measurable will be referred to as the Dellacherie
model.

Example 1. Let Γ be as above, L integrable random variable. Since {Γ > t} is an atom of Ft and
the traces of F and Ft on {Γ 6 t} coincide, then

E(L|Ft) = F (t)1{t<Γ} + L1{t>Γ}, t < tG, where F (t) = G(t)−1

∫
{Γ>t}

LdP.

Every uniformly integrable martingale has this form. Note that F (t), t < tG, is a deterministic
right-continuous function which is absolutely continuous with respect to dG(t) on [0, t] for every
t < tG. In particular, it has a finite variation over [0, t] for t < tG, and over [0, tG) in Case B.
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Example 2. Let Γ be as above and correspond to Case A. Define

Mt = G(t)−1
1{t<Γ}. (1)

Then M = (Mt)t∈R+ is a local martingale. Moreover, it is a martingale only if tG =∞, and it is a
supermartingale if tG <∞. This process (if tG =∞) often appears in the modelling of credit risk.

Example 3. Let B = (Bt)t∈R+ be a standard Brownian motion defined on some stochastic basis
(Ω,G , (Gt)t∈R+ ,P) and σ an a.s. finite stopping time on this basis. Define

τt = inf{s ∈ R+:Bs > t} and Xt = Bσ∧τt , t > 0.

The process X = (Xt)t∈R+ can be written as

Xt = t1{t<Γ} +Bσ1{t>Γ}, where Γ = sup
s6σ

Bs.

Define a single jump filtration F(Γ,G ) = (Ft)t∈R+ generated by Γ. In general, X is a submartingale
with respect to (Gτt)t∈R+ and (Ft)t∈R+, see [3], and may not be a martingale, take, e.g., σ = τ1.

Let us mention briefly what is known about considered models with single jump filtrations. A
simple characterisation of local martingales is suggested in [2]. As a consequence, a full description
of all local martingales is given and they are classified according to their global behaviour. It is
shown that there may be σ-martingales that are not local martingales [2] and there may be local
martingales that are not local martingales with respect to the filtration that they generate [4].
Both possibilities are absent in the Dellacherie model, A full description of all σ-martingales is
given [2] and it is shown that every σ-martingale remains to be a σ-martingale with respect to the
filtration that it generates [4].

Here we consider a single jump filtration F = (Ft)t∈R+ generated by a random time Γ and a
σ-field F and characterize semimartingales with respect to it. Processes with finite variation are
not assumed to be adapted and to start from 0. For a process X = (Xt)t∈R+ , XΓ stands for the
stopped process (Xt∧Γ)t∈R+ .

Theorem 1. (i) Every semimartingale is a process with finite variation.
(ii) If X is a semimartingale, the stopped process XΓ has a representation

XΓ
t = F (t)1{t<Γ} + L1{t>Γ}, t ∈ R+, (2)

where F :R+ → R is a deterministic right-continuous function and L is a random variable. More-
over, F has a finite variation over [0, t] for t < tG, and over [0, tG) in Case B. Any process that
satisfies (2) with F as described above, is a semimartingale.

(iii) If a process with finite variation vanishes on the stochastic interval J0, GammaK, then it is
a predictable semimartingale.

(iv) Let X be a semimartingale. The following statements are equivalent :

(a) X is a special semimartingale.

(b) E(|XΓ|1{Γ6t}) <∞ for all t ∈ T.

(c) E(|∆XΓ|1{Γ6t}) <∞ for all t ∈ T.

Remark 1. Statement (i) is known for a class of so-called jumping filtrations, see [5]. A single
jump filtration is a special case of a jumping filtration.



Remark 2. A formula for the canonical decomposition of a special semimartingale is a simple
consequence of Theorem 1 and Theorem 5 in [2].

Given a process X = (Xt)t>0, its running maximum process is denoted by X = (Xt)t>0:

Xt := sup
s6t

Xs.

A process X is called max-continuous if the process X is continuous.
A max-continuous local martingale X, X0 = 0, is called a local max-level martingale [3] if

E(XCt) ≡ 0, where Cs := inf{t:Xt > s}. A local max-level martingale is not necessary a martin-
gale. Indeed, assume that Γ has a distribution with finite support and without atoms and define
M by (1), then Mt −M0 is a local max-level martingale but not a martingale.

Theorem 2. A necessary and sufficient condition that a random vector (W,V ) with values in
[0,+∞]× [0,+∞) have the same joint law as the vector (X∞, X∞−X∞) for some local max-level
martingale X is that {W = 0} ∪ {W =∞} ⊆ {V = 0} and

E(W ∧ t) = E(V 1{W6t}), t > 0. (3)

If the vector (W,V ) satisfies this condition, then one can take as X a stopped Brownian motion as
in Example 3 which is a continuous martingale, or

Xt = W ∧ t− V 1{W6t}, t > 0,

which is a martingale with respect to a single jump filtration generated by W, or

Xt = Q(t ∧ Γ)− V 1{Γ6t}, t > 0,

where Q(t) := inf{s:P(W 6 s) > t} is the upper quantile function of W, Γ has a uniform distri-
bution on (0, 1) and Law(Q(Γ), V ) = Law(W,V ). In the latter case X is a local martingale with
respect to a single jump filtration generated by Γ.

Remark 3. Let X be a local max-level martingale. Then Xt converges a.s. on the set {X∞ <∞}
to a limit denoted by X∞. We set X∞ −X∞ = 0 on the set {X∞ =∞}.

Remark 4. The quantile function Q(t) is continuous if W satisfies (3), see [3].

A non-trivial part of Theorem 2 is that under (3) there is a stopped Brownian motion X = Bσ

with Law(X∞, X∞ −X∞) = (Bσ, Bσ −Bσ) = Law(W,V ), see [3].
The paper was prepared within the framework of the HSE University Basic Research Program.
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